

Bulk [Dynamics -](mailto:wenbinzhao@wayne.edu) Hands

Post your questions, comments and SLACK: july19-hydrodyn

July 19th, 2023. Wenbin Zhao wenbinzhao@wayne.edu

Contents

- Brief introduction of 3D-Glauber model, coupled with MUSIC hydrodynamic model.
- Brief introduction of the X-SCAPE framework.
- Get familiar with the X-SCAPE code, do some test run. Build some intuitions on the softhard correlations in small systems.
- **Homework**: reproduce the hadron and jet p_T -spectra in p-p at 5.02 TeV.

2

Nuclear matter phase diagram

credit: Chun Shen

- First order phase transition line? Critical point?
- How do the QGP transport properties change in a large baryon density environment? $\eta/s(T, \mu_B), \zeta/s(T, \mu_B)$
- What's the smallest QGP fluid?

3D Dynamics

Overlap time of two nuclei in the laboratory frame:

$$
\tau_{\rm overlap} = \frac{2R}{\gamma v_z} = \frac{2R}{\sinh(y_{\rm beam})},
$$

R: nuclear radius, γ : Lorentz factor, v_z moving velocities, y_{beam} = arccosh($\sqrt{s_{NN}}/(2m_p)$) beam rapidity, m_p : nucleon mass.

• At low energies, the overlapping time is close to hydro life-time.

C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905, Phys. Rev. C 97, 024907 (2018).

3DGlauber dynamical initial condition

- Collision geometry is determined by MC-Glauber model.
- Incoming quarks are decelerated with a classical string tension.
- Conservation for energy, momentum, and net baryon density is imposed. Energy-momentum current and net baryon density are fed into the hydrodynamic simulations as the source terms.

$$
\partial_\mu T^{\mu\nu} = J^\nu \nonumber \\ \partial_\mu J^\mu_B = \rho_B, \nonumber
$$

C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905, Phys. Rev. C 97, 024907 (2018).

3DGlauber + MUSIC + UrQMD

• 3D-Glauber + MUSIC + UrQMD works well in describing various identified particle productions, anisotropic flow from low energies to high energies in heavy-ion collisions.

Small System Scan at RHIC (STAR and

PHENIX: two-particle correlations between BBCS-CNT or FVTXS-CNT. STAR: TI

 $(3+1)$ D simulations are essential to understand the difference bet measurements

Nature Physics 15, pages214–220 (2019); Roy, A. Lacey (For the STAR) QM 2019., ST

Longitudinal decorrelations

- The elliptic flow correlations in (d, **³**He)+Au remain strong with increasing η difference, which ensures strong geometric response in the PHENIX measurements.
- Flow correlations of v_3 of all systems are significantly below 1, indicating the choice of reference flow angle is crucial for the two-particle flow measurements

W. Zhao, S. Ryu, C. Shen and B. Schenke Phys. Rev. C 107, 014904 (2023). **8**

STAR and PHENIX

 $[-3.9, -3.1]$ v.s. $[-0.35, 0.35]$ $[-3.0, -1.0]$ v.s. $[-0.35, 0.35]$;

STAR η range: $[-0.9, 0.9]$ and $|\Delta \eta| > 1.0$

W. Zhao, S. Ryu, C. Shen and B. Schenke Phys. Rev. C 107, 014904 (2023).

- 3D hybrid model reproduces the PHENIX $v_2(p_T)$ and $v_3(p_T)$ for all three systems.
- The 3D hybrid model gives larger $v_3(p_T)$ with the STAR definition than those from PHENIX, explaining 50% difference between PHENIX and STAR v_3 measurements.

"Collectivity" in UPC

Taken from Nicole Lewis's slide

• UPCs have a similar order of magnitude and trends of collectivity as other previously measured hadronic systems

ATLAS Phys. Rev. C 104, 014903 (2021). Y. Shi, etc.al,Phys. Rev. D 103, 054017 (2021). **10**

Collectivity in γ^* **+Pb** and p +Pb

- The v_2 hierarchy between p+Pb and γ^* +Pb is reproduced by our model calculations.
- The longitudinal flow decorrelation is stronger in the γ^* +Pb than p+Pb, resulting in the v_2 hierarchy between γ^* +Pb and p+Pb.
-

• v_3 is not well described in γ^* +Pb yet.
C. Shen and B. Schenke PhysRevLett.129.252302. C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905.

iEBE-MUSIC: https://github.com/chunshen1987/iEBE-

X-ion collisions with a Statistically and Computationally **X-SCAPE**: https://github.com/JETSCAPE/X-SCAPE

tware that simulates different aspects of a he collision. For a full introduction to JETSCAPE, please see The JETSCAPE framework.

Please cite The JETSCAPE framework if you use this package for scientific work.

One of the Goals of small system

ATLAS: arXiv:1910.13978. Model: arXiv:1311.5463.

Workflow of the X-SCAPE for small system

Figure 11: The workflow of the X-SCAPE event generator. The hard scattering is sampled using PYTHIA, and the scattering location is sampled according to the collision geometry provided by the 3D-Glauber initial state model. The i-Matter and Matter modules model the initial-state and final-state parton shower for the produced high-energy particles. After subtracting the energy and momentum of hard scatterings in the 3D Glauber, the 3D Glauber $+$ MUSIC $+$ iSS provides soft particle production. Finally, PYTHIA is used to hadronize the shower particles from Matter with the collision remnants provided by the 3D-Glauber model.

Questions?

or neans completed the preparation

or neans partially finished or Incomplete

X-SCAPE module iMATTER

- Call Pythia (ISR-FSR-OFF) generate MPI scatterings.
- Start each parton at high and negative Q^2 and evolve back to $Q^2 = -1 \text{ GeV}^2$.
- A well-established method of generating ISR*
- i-MATTER : run parton shower backwards in time.
- Final parton at most negative time is the parent.
- **t** Its hard energy removed from 3DGlauber, not available for hydro evolution. **It introduces the non-trivial soft-hard correlations.**

Ismail Soudi, 21st. July

Use power law for sampling hard scattering

 $<$ Hard $>$ <PythiaGun> <pTHatMin>4</pTHatMin> <pTHatMax>-1</pTHatMax> 5020 <LinesToRead> PhaseSpace:bias2Selection = on PhaseSpace:bias2SelectionPow = 4 PhaseSpace:bias2SelectionRef = 10 \langle LinesToRead> </PythiaGun> $<$ /Hard $>$

Pythia output variables for each event: w_i = pythia.info.weight() w^{sum} = pythia.info.weightSum() \hat{p}_T = pythia.info.pTHat()

$$
Weight = \left(\frac{p_T^{ref}}{p_T^{Hat}}\right)^{pow}
$$

Pythia output variables with average over all events:

 σ_{ptHat} = pythia.info.sigmaGen() $\sigma_{\textit{ptHatError}}$ = pythia.info.sigmaErr()