Evolution of heavy quarks in the QGP using JETSCAPE

Gojko Vujanovic

University of Regina

JETSCAPE Summer School 2023

July 24th, 2023

The JETSCAPE Framework

- JETSCAPE framework allows :
	- Multiple energy loss formalisms to be present simultaneously, each applied in its region of validity.
	- Provides a set of Bayesian tools to characterize the interaction of hard probes with the QGP (see tomorrow's Bayesian session).

Outline

- Overview of physics and JETSCAPE modules
- MATTER and the high-virtuality evolution
- LBT and low-virtuality evolution
- Results with heavy flavors and future developments
- Conclusion & Outlook

Outline

- Overview of physics and JETSCAPE modules
- MATTER and the high-virtuality evolution
- LBT and low-virtuality evolution
- Results with heavy flavors and future developments
- Conclusion & Outlook

Monte Carlo jet shower simulation in vacuum

- In p-p collisions, the initial highly virtual quark or gluon produces a jet shower solely through radiation.
- In PYTHIA, a Monte Carlo event generator, this shower is angular ordered, which generate a jet in a narrow cone.

- In the nuclear medium, the particles in a jet after hadronization occupy a wider cone.
- This widening is given by scatterings, which modify the radiation pattern:

- In the nuclear medium, the particles in a jet after hadronization occupy a wider cone.
- This widening is given by scatterings, which modify the radiation pattern:
	- multiple scatterings in the QGP induce $\downarrow E_{typ}$ of radiated quark/gluon (i.e. parton)
		- $\Rightarrow \uparrow \hat{\theta}_{tvp}$ radiation angle.

- In the nuclear medium, the particles in a jet after hadronization occupy a wider cone.
- This widening is given by scatterings, which modify the radiation pattern:
	- multiple scatterings in the QGP induce $\downarrow E_{tvp}$ of radiated quark/gluon (i.e. parton) $\Rightarrow \uparrow \theta_{typ}$ radiation angle.
	- Scattering processes can pick-up (or deposit) partons into the QGP (see dashed to solid lines).

- In the nuclear medium, the particles in a jet after hadronization occupy a wider cone.
- This widening is given by scatterings, which modify the radiation pattern:
	- multiple scatterings in the QGP induce $\downarrow E_{tvp}$ of radiated quark/gluon (i.e. parton) $\Rightarrow \uparrow \theta_{typ}$ radiation angle.
	- Scattering processes can pick-up (or deposit) partons into the QGP (see dashed to solid lines).
	- Medium-induced radiation/absorption also change parton chemistry of light-flavored jets. [arxiv:2211.15553]

- In the nuclear medium, the particles in a jet after hadronization occupy a wider cone.
- This widening is given by scatterings, which modify the radiation pattern:
	- multiple scatterings in the QGP induce $\downarrow E_{tvp}$ of radiated quark/gluon (i.e. parton) $\Rightarrow \uparrow \theta_{typ}$ radiation angle.
	- Scattering processes can pick-up (or deposit) partons into the QGP (see dashed to solid lines).
	- Medium-induced radiation/absorption also change parton chemistry of light-flavored jets. [arxiv:2211.15553]
- Scatterings affect differently highly virtual particles compared to near-on-shell particles

• High→Lower Q, High E: Rapid virtuality loss through radiation. MATTER (via Higher Twist) generates scattering-modified radiation.

• High→Lower Q, High E: Rapid virtuality loss through radiation. MATTER (via Higher Twist) generates scattering-modified radiation. MATTER is evolved until a switching virtuality (Q_{switch}) is reached.

- High→Lower Q, High E: Rapid virtuality loss through radiation. MATTER (via Higher Twist) generates scattering-modified radiation.
- Low Q, High→Lower E: Scattering is important (Linear Boltzmann Transport)

- High→Lower Q, High E: Rapid virtuality loss through radiation. MATTER (via Higher Twist) generates scattering-modified radiation.
- Low Q, High→Lower E: Scattering is important (Linear Boltzmann Transport)
- Low Q, Low E: Hadronization physics important (partons→Pythia for hadronization)

- High→Lower Q, High E: Rapid virtuality loss through radiation. MATTER (via Higher Twist) generates scattering-modified radiation.
- Low Q, High→Lower E: Scattering is important (Linear Boltzmann Transport)
- Low Q, Low E: Hadronization physics important (partons→Pythia for hadronization)

The JETSCAPE framework combines these multiple stages for an improved description of parton energy loss.

Outline

- Overview of physics and JETSCAPE modules
- MATTER and the high-virtuality evolution
- LBT and low-virtuality evolution
- Results with heavy flavors and future developments
- Conclusion & Outlook

The splitting function for a quark

• Splitting function for a quark in vacuum (Peskin & Schroeder):

$$
P_{g \leftarrow q}(y) = P(y) = C_F \frac{1 + (1 - y)^2}{y}
$$

w/ the Casimir for $SU(N_c = 3) C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3}$

The splitting function for a quark

• Splitting function for a quark in vacuum (Peskin & Schroeder):

$$
P(y) = \frac{4}{3} \frac{1 + (1 - y)^2}{y}
$$

• A few definitions:

$$
q^{\mu} = (q^+, q^-, \vec{q}_{\perp}) = \left(q^+, \frac{Q^2 + M^2}{2q^+}, \vec{0}_{\perp}\right)
$$

$$
q^+ = \frac{q^0 + q^z}{\sqrt{2}}; \quad q^- = \frac{q^0 - q^z}{\sqrt{2}}
$$

$$
\Rightarrow q^2 - M^2 = 2q^+q^- - \vec{q}_{\perp}^2 - M^2 = Q^2
$$

$$
q^{\mu} = p_q^{\mu} + p_g^{\mu}
$$

\n
$$
\Rightarrow p_q^{\mu} = \left((1 - y)q^+, \frac{\vec{l}_{\perp}^2 + M^2}{2(1 - y)q^+, -\vec{l}_{\perp}} \right)
$$

\n
$$
\Rightarrow p_g^{\mu} = \left(yq^+, \frac{\vec{l}_{\perp}^2}{2yq^+, \vec{l}_{\perp}} \right)
$$

The splitting function for a quark

• Splitting function for a quark in vacuum (Peskin & Schroeder):

$$
P(y) = \frac{4}{3} \frac{1 + (1 - y)^2}{y}
$$

• The in-medium splitting function is affected by scattering. At high Q^2 , only a single scattering is allowed, thus the full splitting function is :

• If $l_{\perp}^2 \sim k_{\perp}^2 \Rightarrow$ medium can resolve the two daughter partons

• If $l_{\perp}^2 \sim k_{\perp}^2 \Rightarrow$ medium can resolve the two daughter

 $-l_{1x} = 5 \text{ GeV}$

100

150

- The interference between these diagrams gives (for an incoming light-flavor)
	- Inside blue dotted lines: k_1 -range of coherent scattering
	- Outside blue dotted lines**:** scattering and radiation become more and more incoherent

- If $l_{\perp}^2 \sim k_{\perp}^2 \Rightarrow$ medium can resolve the two daughter partons
- Taylor-expanding in k_1 and integrating over k_1 , the medium-modified splitting function (for incoming light quarks) is

 $\mathcal{P}(y) = P(y) + \tilde{\mathcal{P}}(y)$

[PRC 101, 034908 (2020)]

$$
\tilde{\mathcal{P}}(y) = \frac{P(y) \int_0^{\tau_f^+} d\tau^+ \left[2 - 2 \cos(\tau^+ / \tau_f^+) \right] \hat{q}(Q^2)}{y(1 - y)Q^2}
$$

 τ_f^+ = $2q^+$ Q^2 = $2q^+y(1-y)$ l_{\perp}^2

- A part of coherent scattering effects is in $2 2 \cos(\tau/\tau_f)$
- The other part coherence is included in $\widehat{q}(\mathit{Q}^{\,2})$

- If $l_{\perp}^2 \sim k_{\perp}^2 \Rightarrow$ medium can resolve the two daughter partons
- Applying the light flavor approach on heavy flavors, the in-medium splitting function is:

 $P(y) = P(y) + \tilde{P}(y)$ [PRC 94, 054902 (2016)]

$$
\tilde{\mathcal{P}}(y) = \frac{P(y)A(y, \chi)\int_0^{\tau_f^+} d\tau^+ [2 - 2\cos(\tau^+/\tau_f^+)]\hat{q}}{y(1-y)Q^2(1+\chi)^2}
$$

$$
A(y, \chi) = \left\{ \left(1 - \frac{y}{2} \right) - \chi + \left(1 - \frac{y}{2} \right) \chi^2 \right\}
$$

$$
\chi = \frac{y^2 M^2}{l_{\perp}^2} = \frac{y^2 M^2}{y(1 - y)Q^2 - y^2 M^2}
$$

$$
\tau_f^+ = \frac{2q^+ y(1 - y)}{l_{\perp}^2 + y^2 M^2}
$$

24

Virtuality-dependent \widehat{q}

25

Why is a virtuality-dependent \hat{q} needed?

• $\widehat{q}(Q^2)$ is a key ingredient to simultaneously describe leading hadron R_{AA} at different $\sqrt{s_{NN}}$.

Parametrizing the virtuality dependence of \hat{q}

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$.

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$. This is unlike PYTHIA, since in MATTER the daughter Q_d^2 is found before θ_d (or l_\perp) between the daughters is known \Rightarrow θ_{d_1} $>$ \cdots $>$ θ_{d_i} $>$ \cdots $>$ θ_{d_n} is not strictly ensured for a daughter generation i \in $n.$

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$.
	- The Sudakov form factor assigns virtuality to each parton by throwing a random number # and solving for $# = \Delta(Q)$. [Adv. Ser. Direct. HEP, 573 (1989); NPA 696, 788 (2001)]

$$
\Delta(Q_{\text{max}}, Q \ge Q_{\text{min}}) = \exp\left[-\int_{Q^2}^{Q_{\text{max}}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\text{min}}}^{y_{\text{max}}} dy \mathcal{P}(y, Q^2)\right]
$$

$$
Q_{\text{max}}^2 = \frac{E^2}{4} \forall M
$$

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$.
	- The Sudakov form factor assigns virtuality to each parton by throwing a random number # and solving for $# = \Delta(Q)$. [Adv. Ser. Direct. HEP, 573 (1989); NPA 696, 788 (2001)]

$$
\Delta(Q_{\text{max}}, Q \ge Q_{\text{min}}) = \exp\left[-\int_{Q^2}^{Q_{\text{max}}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\text{min}}}^{y_{\text{max}}} dy \mathcal{P}(y, Q^2)\right]
$$

$$
Q_{\text{max}}^2 = \frac{E^2}{4} \forall M
$$

• For $Q \rightarrow Q + g$

$$
Q_{\min}^2 = \frac{Q_0^2}{2} \left[1 + \sqrt{1 + \frac{4M^2}{Q_0^2}} \right]
$$

$$
y_{\max} = 1 - \frac{Q_0^2}{2Q_0^2}
$$

$$
Q_0^2 = a \, cutoff \, (non-pert.) \, scale \, (typ. Q_0 = 1 \, GeV)
$$

$$
y_{\min} = \frac{Q_0^2}{2Q^2} +
$$

 M^2

 Q_0^2

 $2Q^2$

 $M^2 + Q^2$

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$.
	- The Sudakov form factor assigns virtuality to each parton by throwing a random number # and solving for $# = \Delta(Q)$. [Adv. Ser. Direct. HEP, 573 (1989); NPA 696, 788 (2001)]

$$
\Delta(Q_{\text{max}}, Q \ge Q_{\text{min}}) = \exp\left[-\int_{Q^2}^{Q_{\text{max}}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\text{min}}}^{y_{\text{max}}} dy \, \mathcal{P}(y, Q^2)\right]
$$

• Recursive Sudakov application for each daughter (giving Q_d^2) generates a shower.

• Where different decay channels are possible, $\mathcal{P} \to \sum_i \mathcal{P}_i$ where *i* identifies the processes. For gluons, *i* labels $g \to gg$, $g \to q\bar{q}$, and $g \to QQ$. 32

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$.
	- The Sudakov form factor assigns virtuality to each parton by throwing a random number # and solving for $# = \Delta(Q)$. [Adv. Ser. Direct. HEP, 573 (1989); NPA 696, 788 (2001)]

$$
\Delta(Q_{\text{max}}, Q \ge Q_{\text{min}}) = \exp\left[-\int_{Q^2}^{Q_{\text{max}}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\text{min}}}^{y_{\text{max}}} dy \, \mathcal{P}(y, Q^2)\right]
$$

• For $g \to Q\bar{Q}$, the splitting function is phenomenologically estimated using light flavor $g \to q\bar{q}$, with appropriate kinematic cuts to account for heavy flavor mass (i. e. y_{\min} , y_{\max} , Q_{\min}^2).

$$
\mathcal{P}(y,\mu^2) = P(y) + \frac{P(y)\int_{\tau_i}^{\tau_f} d\tau \hat{q}(Q^2) \left[2 - 2\cos\left[\frac{\tau}{\tau_f(Q^2)}\right]\right]}{y(1-y)Q^2} \qquad Q_{\min}^2 = Q_0^2 + 2M^2
$$

$$
y_{\max} = 1 - \frac{Q_0^2}{2Q^2}
$$

$$
y_{\min} = \frac{Q_0^2}{2Q^2} + \frac{M^2}{Q^2}
$$

 M^2

 Q_0^2

 $2Q^2$

 Q^2

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$.
	- The Sudakov form factor assigns virtuality to each parton by throwing a random number # and solving for $# = \Delta(Q)$. [Adv. Ser. Direct. HEP, 573 (1989); NPA 696, 788 (2001)]

$$
\Delta(Q_{\text{max}}, Q \ge Q_{\text{min}}) = \exp\left[-\int_{Q^2}^{Q_{\text{max}}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\text{min}}}^{y_{\text{max}}} dy \, \mathcal{P}(y, Q^2)\right]
$$

• For $q \to Q\bar{Q}$, the splitting function is phenomenologically estimated using light flavor $q \to q\bar{q}$, with appropriate kinematic cuts to account for heavy flavor mass.

$$
P(y)\int_{\tau_i}^{\tau_f} d\tau \hat{q}(Q^2) \left[2 - 2\cos\left[\frac{\tau}{\tau_f(Q^2)}\right]\right]
$$

$$
\mathcal{P}(y,\mu^2) = P(y) + \frac{y(1-y)Q^2}{\sqrt{1-y^2}}
$$

• Also, the scale M should also play are role in $\widehat q\bigl(Q^2,M\bigr)$. For now, only $\widehat q\bigl(Q^2\bigr)$ is used.

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$.
	- The Sudakov form factor assigns virtuality to each parton by throwing a random number # and solving for $# = \Delta(Q)$. [Adv. Ser. Direct. HEP, 573 (1989); NPA 696, 788 (2001)]

$$
\Delta(Q_{\text{max}}, Q \ge Q_{\text{min}}) = \exp\left[-\int\limits_{Q^2}^{Q_{\text{max}}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int\limits_{y_{\text{min}}}^{y_{\text{max}}} dy \, \mathcal{P}(y, Q^2)\right]
$$

• MATTER also calculates $2 \rightarrow 2$ scatterings, using the LO perturbative QCD (pQCD) formula

• The details about $2 \rightarrow 2$ scatterings is given in the next section.

Outline

- Overview of physics and JETSCAPE modules
- MATTER and the high-virtuality evolution
- LBT and low-virtuality evolution
- Results with heavy flavors and future developments
- Conclusion & Outlook

- Valid for high E, assuming particles are (near) on-shell $(\Rightarrow Q \leq Q_{switch})$
- Solves the *effective* Boltzmann eq. for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

- The Boltzmann equation is valid in very dilute media where any n -particle correlations $\forall n \geq 2$ are neglected.
	- 2 \rightarrow 2 scattering is allowed in C_{el} . To calculate C_{el} one only needs 1-particle distributions.
	- 1 \rightarrow 2 decays \mathcal{G}_{inel} in the vacuum are allowed, only a 1-particle distribution is needed.

- Valid for high E, assuming particles are (near) on-shell $(\Rightarrow Q \leq Q_{switch})$
- Solves the *effective* Boltzmann eq. for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

- The Boltzmann equation is valid in very dilute media where any n -particle correlations $\forall n \geq 2$ are neglected.
	- 2 \rightarrow 2 scattering is allowed in C_{el} . To calculate C_{el} one only needs 1-particle distributions.
	- 1 \rightarrow 2 decays \mathcal{G}_{inel} in the vacuum are allowed, only a 1-particle distribution is needed.
	- In-medium $1 \rightarrow 2$ decays would require 2-particle distributions, e.g., $f_2(k_{\perp} | p_1)$, to capture the correlation/interference between the scattering and the decay.

- Valid for high E, assuming particles are (near) on-shell $(\Rightarrow Q \leq Q_{switch})$
- Solves the *effective* Boltzmann eq. for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

- The Boltzmann equation is valid in very dilute media where any n -particle correlations $\forall n \geq 2$ are neglected.
	- 2 \rightarrow 2 scattering is allowed in C_{el} . To calculate C_{el} one only needs 1-particle distributions.
	- 1 \rightarrow 2 decays \mathcal{G}_{inel} in the vacuum are allowed, only a 1-particle distribution is needed.
- Phenomenologically, keeping track of the n -particle distributions is numerically costly, so an *effective* Boltzmann eq. is used that includes medium-induced decay G_{inel} on the r.h.s. *w/o* computing the *evolution* of a 2-particle distribution, for example, $f_2(k_1 | p_1)$.

- Valid for high E, assuming particles are (near) on-shell $(\Rightarrow Q \leq Q_{switch})$
- Solves the *effective* Boltzmann eq. for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

• C_{el} calculates LO pQCD $1 + 2 \leftrightarrow 3 + 4$ scattering if <u>all 4</u> particles are in a *thermal medium*

$$
\mathcal{C}_{el} \approx -\frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} f(p_1) f(p_2) \left| \overline{\mathcal{M}} \right|^2 [1 \pm f(p_3)] [1 \pm f(p_4)] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4)
$$

gives the rate *density* of collisions, i.e.,

$$
C_{el} = (2\pi)^3 \frac{d^3 R}{d^3 p_1} = (2\pi)^3 \frac{d^7 N}{d^4 x d^3 p_1}
$$

 \Rightarrow total number of collisions is:

$$
N = \int_{QGP} d^4x \int \frac{d^3p_1}{(2\pi)^3} (2\pi)^3 C_{el}
$$

- Valid for high E, assuming particles are (near) on-shell $(\Rightarrow Q \leq Q_{switch})$
- Solves the *effective* Boltzmann eq. for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

• \mathcal{C}_{el} calculates LO pQCD $1 + 2 \leftrightarrow 3 + 4$ scattering if all 4 particles are in a thermal medium

$$
\mathcal{C}_{el} \approx -\frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} f(p_1) f(p_2) \left| \overline{\mathcal{M}} \right|^2 [1 \pm f(p_3)] [1 \pm f(p_4)] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4)
$$

• A comparison with vacuum:

Inside the medium:

$$
(2\pi)^{3} \frac{d^{3}N}{d^{3}p_{1}} = \int_{QGP} d^{4}x \ C_{el} \Rightarrow \text{total number of scatterings N} = \int \frac{d^{3}p_{1}}{(2\pi)^{3}} (2\pi)^{3} \frac{d^{3}N}{d^{3}p_{1}}
$$
\n
$$
\text{Inside vacuum N} = L\sigma:
$$
\n
$$
L \propto \left\{ \prod_{i=1,2} \left[\int \frac{d^{3}p_{i}}{(2\pi)^{3}} f(p_{i}) \right] \right\} 4 \sqrt{(p_{1} \cdot p_{2})^{2} - p_{1}^{2}p_{2}^{2}}; \qquad \sigma \propto \frac{1}{2p_{1}^{0}2p_{2}^{0}} \left\{ \prod_{f=3,4} \left[\int \frac{d^{3}p_{f}}{2p_{f}^{0}(2\pi)^{3}} \right] \right\} \frac{|\overline{\mathcal{M}}|^{2} (2\pi)^{4} \delta^{(4)}(p_{1} + p_{2} - p_{3} - p_{4})}{4 \sqrt{(p_{1} \cdot p_{2})^{2} - p_{1}^{2}p_{2}^{2}}}
$$

- Valid for high E, assuming particles are (near) on-shell $(\Rightarrow Q \leq Q_{switch})$
- Solves the *effective* Boltzmann eq. for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

• \mathcal{C}_{el} calculates LO pQCD $1 + 2 \leftrightarrow 3 + 4$ scattering if all 4 particles are in a thermal medium

$$
\mathcal{C}_{el} \approx -\frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} f(p_1) f(p_2) \left| \overline{\mathcal{M}} \right|^2 [1 \pm f(p_3)] [1 \pm f(p_4)] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4)
$$

Aside: This is a loss contribution to the $f(p_1)$ evolution on the lhs. Indeed, heavy quarks starts in the p_1 state and is scattered out of p_1 (and into p_3), giving a reduction in $f(p_1)$, hence the minus sign.

- Valid for high E, assuming particles are (near) on-shell $(\Rightarrow Q \leq Q_{switch})$
- Solves the *effective* Boltzmann eq. for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

• \mathcal{C}_{el} calculates LO pQCD $1 + 2 \leftrightarrow 3 + 4$ scattering if all 4 particles are in a thermal medium

 $\mathcal{C}_{el} \approx -$ 1 $2p_1^0$ $\frac{1}{\sqrt{2}}$ d^3p_2 $2p_2^0(2\pi)^3$ \vert d^3p_3 $2p_3^0(2\pi)^3$ $\overline{1}$ d^3p_4 $2p_4^0(2\pi)^3$ $f(p_1)f(p_2)|\overline{\mathcal{M}}|^2[1 \pm f(p_3)][1 \pm f(p_4)](2\pi)^4\delta^{(4)}(p_1+p_2-p_3-p_4)$

Aside: This is a loss contribution to the $f(p_1)$ evolution on the lhs. Indeed, heavy quarks starts in the p_1 state and is scattered out of p_1 (and into p_3), giving a reduction in $f(p_1)$, hence the minus sign.

- When running a Monte Carlo (MC) simulation, $f(x, p_1)$ is replaced by sampled particles in the jet.
- Averaging over many MC simulations can reconstruct $f(x, p_1).$

• To calculate the collisional rate density for a single parton in the QGP (at LO pQCD)

$\mathcal{C}_{el} \approx -$ 1 $2p_1^0$ $\frac{1}{\sqrt{2}}$ d^3p_2 $2p_2^0(2\pi)^3$ $\overline{1}$ d^3p_3 $2p_3^0(2\pi)^3$ $\overline{1}$ d^3p_4 $2p_4^0(2\pi)^3$ $f(p_1) f(p_2) |\bar{M}|^2 \leq \pm f(p_3) \leq 1 \pm f(p_4) (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4)$ $\frac{1}{2}$ $\sqrt{2a^2}$

 p_1 and p_3 are not part of the thermal medium: i.e. they are part of the jet, whose *quantum* distribution is MC sampled in LBT. This *unlike* the QGP which uses *classical* hydrodynamics.

• To calculate the collisional rate density for a single parton in the QGP (at LO pQCD)

$$
\mathcal{C}_{el} \approx -\frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} (1) f(p_2) |\overline{\mathcal{M}}|^2 [1] [1 \pm f(p_4)] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4)
$$

• Leading order QCD $\left| \bar{\mathcal{M}} \right|^2$ for $2 \rightarrow 2$ scatterigns

• To calculate the collisional rate density for a single parton in the QGP (at LO pQCD)

$$
\mathcal{C}_{el} \approx -\frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} (1) f(p_2) |\overline{\mathcal{M}}|^2 [1] [1 \pm f(p_4)] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4)
$$

• Leading order QCD $\left| \bar{\mathcal{M}} \right|^2$ for $2 \rightarrow 2$ scatterigns

• To calculate the collisional rate density for a single parton in the QGP (at LO pQCD)

$$
\mathcal{C}_{el} \approx -\frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} (1) f(p_2) \left| \overline{\mathcal{M}} \right|^2 [1] [1 \pm f(p_4)] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4)
$$

• The $\mathcal{G}_{inel}\,$ calculates medium-induced stimulated $1\to 2$ emission at LO in $\mid\alpha_{\scriptscriptstyle S}$, $M²$ Q^2 [**PRC 94, 054902 (2016)**]

$$
G_{inel} = \int \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int dy \, \mathcal{P}(y)
$$

$$
\mathcal{P}(y) = P(y) + \frac{P(y) \left[\left(1 - \frac{y}{2} \right) - \chi + \left(1 - \frac{y}{2} \right) \chi^2 \right] \int_0^{\tau_f^+} d\tau^+ \hat{q}_{HTL} \left[2 - 2 \cos(\tau^+ / \tau_f^+) \right]}{y(1 - y)Q^2 (1 + \chi)^2} \frac{\tau_f^+}{\chi} = \frac{2q^+ y(1 - y)}{\ell_{\perp}^2 (1 + \chi)}
$$

$$
\chi = \frac{y^2 M^2}{\ell_{\perp}^2}
$$

Outline

- Overview of physics and JETSCAPE modules
- MATTER and the high-virtuality evolution
- LBT and low-virtuality evolution
- Results with heavy flavors and future developments
- Conclusion & Outlook

An experimental observable

• To study the nuclear medium's effects on parton shower, one computes nuclear modification factor

$$
R_{AA}^X = \frac{\frac{d\sigma_{AA}^X}{dp_T}}{N_{bin}\frac{d\sigma_{pp}^X}{dp_T}}
$$

 X is the leading (highest energy) hadron in a jet (which can be of an identified species or not)

- If an A-A collisions was the same as p-p collisions, then we can rescale the p-p collision by the N_{bin} binary collisions \Rightarrow $R_{AA}^X \rightarrow 1$.
- R_{AA} < 1 stems from two different sources:
	- Initial state effects: nuclear modifications to the parton distribution function.
	- Final state effects: creation of the QGP through which partons loose energy and the jet is quenched.

About the QGP medium simulations

- Using *maximum a posteriori* parameters of a Bayesian analysis using soft hadronic observables, QGP evolution profiles were generated for jet energy loss simulations. [**NPA 967 67 (2017); 1804.06469**]
- Event-by-event simulations consist of
	- TRENTO initial conditions
	- 2+1D Pre-equilibrium dynamics (free-streaming)
	- 2+1D 2nd order dissipative hydrodynamics of QGP
	- UrQMD simulation

• In all cases, parameters were tuned using light flavor jets and charged hadron R_{AA}

 $1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)$

- The orange curve is for \hat{q}_{HTL} only.
- Red, green, and blue curves use different values of $c_1 \& c_2$ in $\widehat{q}\big(Q^2\big)$. Same \widehat{q} for light and heavy quarks
- Beyond a threshold, $(c_1 = 5$ and $c_2 = 0$) a low sensitivity to $c_1 \& c_2$ is seen.

R_{AA} sensitivity to the switching virtuality Q_S^2 between MATTER & LBT

• The same $\widehat q\big(Q^2\big)$ used for light and heavy flavor \Rightarrow similar sensitivity to the switching virtuality $t_s=Q_s^2.$

• Will explore how the HF mass *scale* M and virtuality scale Q^2 affects \widehat{q} together, i.e. $\widehat{q}(Q^2, M)$.

• D-meson R_{AA} is sensitive to $q \to Q + \bar{Q}$ at the ~20% level for both parametrizations of \hat{q} (i.e., $\widehat{q}\left(Q^{2}\right)$ and \widehat{q}_{HTL})

Sensitinity of R_{AA} to $g \rightarrow Q + Q$

- To explore further: (i) $\widehat{q}(Q^2, M)$ and, also, (ii) ${\cal P}_{g \to Q + \bar Q} \big(y, Q^2, M \big)$ beyond the phenomenological approach used here.
- Key message: future simulations of charm energy loss must include $q \rightarrow Q + Q$!

Conclusion and outlook

- A multi-scale formalism, such as that present inside the JETSCAPE framework, allows for a simultaneous description of light flavor and heavy flavor energy loss inside QGP.
- Realistic simulations of charm energy loss must include dynamical generation of heavy quarks via $q \to Q + \overline{Q}$.
- Future physics improvement for heavy flavors energy loss to include:
	- A multiscale-dependent $\widehat{q}(Q^2,M)$
	- A more realistic splitting function for $q \to Q + \overline{Q}$
	- Including additional energy loss physics, such as longitudinal energy loss (\hat{e}, \hat{e}_2)
	- Explore bottom quark energy loss
- A Bayesian analysis including heavy flavors is ongoing…

Thank you

- **MATTER** (The **M**odular **A**ll **T**wist **T**ransverse-scattering **E**lastic-drag and **R**adiation) valid for High E, High Q^2
	- Virtuality-ordered shower with splittings above $Q^2 \gg Q_{switch}^2$. This is unlike Pythia as the daughter Q_d^2 is found before θ between the daughters is known \Rightarrow $\theta_{d_1} > \dots > \theta_{d_n}$ is not strictly ensured.
	- Example: $Q \rightarrow Q + g$

$$
q^{\mu} = p_q^{\mu} + p_g^{\mu}
$$

\n
$$
\Rightarrow p_q^{\mu} = \left((1 - y)q^+ \frac{\overline{l_1^2 + M^2 + Q_q^2}}{2(1 - y)q^+}, -\overline{l_1} \right)
$$

\n
$$
\Rightarrow p_g^{\mu} = \left(yq^+ \frac{\overline{l_1^2 + Q_g^2}}{2yq^+}, \overline{l_1} \right)
$$

\n
$$
\Rightarrow \theta_g = \arctan\left(\frac{l_1}{p^z}\right) = \arctan\left(\frac{\sqrt{2}l_1}{yq^+ - \frac{l_1^2 + Q_g^2}{2yq^+}}\right)
$$

Conservation of the "–" component of the 4-vector

- Valid for high E, assuming particles are on-shell
- Solves the time-ordered evolution for the phase space distribution function

 $p_1 \cdot \partial f(x, p_1) = C_{el} + G_{inel}$

• The LO pQCD $1 + 2 \leftrightarrow 3 + 4$ scattering is included in \mathcal{C}_{el}

$$
\begin{split}\n&\mathcal{C}_{el} \\
&= -\frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} f(p_1) f(p_2) |\overline{\mathcal{M}}|^2 [1 \pm f(p_3)] [1 \pm f(p_4)] (2\pi)^4 \delta^{(4)}(p+k-l-q) \\
&\quad + \frac{1}{2p_1^0} \int \frac{d^3 p_2}{2p_2^0 (2\pi)^3} \int \frac{d^3 p_3}{2p_3^0 (2\pi)^3} \int \frac{d^3 p_4}{2p_4^0 (2\pi)^3} f(p_3) f(p_4) |\overline{\mathcal{M}}|^2 [1 \pm f(p_1)] [1 \pm f(p_2)] (2\pi)^4 \delta^{(4)}(p+k-l-q)\n\end{split}
$$

About the QGP medium simulations

- MAP from Bernhard et al. **NPA 967 67 (2017); 1804.06469** used for QGP evolution profiles
- Event-by-event simulations consist of
	- TRENTO initial conditions
	- 2+1D Pre-equilibrium dynamics (free-streaming)
	- 2+1D 2nd order dissipative hydrodynamics of QGP