Experimental Overview of Heavy Flavor Physics in HIC - Part I

Deepa Thomas

JETSCAPE Summer School 2023 24 July, 2023

- Experimental overview Part 1
 - Why study heavy-flavor?
 - How HF particles are studied and experimentally measured? ullet
 - Experimental results: RAA, v₂... \bullet
- Experimental overview Part 2
 - •
- Theoretical description of HF energy loss

Techniques for heavy-flavor measurements: strategies, challenges and future direction

Introduction

- Quark Gluon Plasma produced in high energy heavy-ion collisions.
- Experimental evidence of QGP formation from light hadrons.

Deepa Thomas

Jet quenching

Heavy quarks in Hot QCD medium

 How does QCD interactions at the microscopic level lead to emergent phenomena in QGP -> probe inner workings of QGP by resolving properties at shorter length scales.

Heavy quarks (charm and beauty)

- -> Less energy loss compared to light quarks

 \bullet

• $m_Q >> T_{QGP}$

 \bullet

Hadronization:

Identify preserved

4

How to study HF

- Open heavy-flavour
- Quarkonia

- **Open heavy-flavour :** heavy quark (c/b) hadronise with light quarks (q) • D mesons(D⁰, D⁺, D_s, D^{*}₊), B meson (B⁰, B⁺,..)
 - Study in-medium interactions -> depends on quark mass and color charge

 $\Delta E(g) > \Delta E(u, d, s) > \Delta E(c) > \Delta E(b)$

• Study fragmentation and hadronisation mechanisms in the presence of the medium

- Open heavy-flavour
- Quarkonia

Quarkonia / Hidden heavy-flavor (bound states of cc and bb)

- J/Ψ, Ψ(2S), Y(1S),...
- Screening of color force in the deconfined medium -> suppression.
- Depends on the binding energy of Quarkonia and the temperature of the medium -> sequential suppression pattern expected.

 Recombination of thermalized heavy quarks in the medium during or at the phase boundary of the deconfined phase -> regeneration

Measuring HF particles

Experimentally heavy-flavour hadrons studied through their decay products:

```
Inclusive channels:
```

```
• c,b -> l(e,µ) + X (BR: 10%)
```

```
• B+ -> D
0 + X (BR: 80%)
```

```
Exclusive channels:
```

```
    D<sup>0</sup> -> K<sup>-</sup> + π<sup>+</sup> (BR: 3.88%)
```

```
    D*+ -> D<sup>0</sup> + π+ (BR: 2.62%)
```

```
• B<sup>+</sup> -> J/Ψ + K (BR: 6.12 x 10<sup>-5</sup>%)
```

```
• Λ<sub>c</sub> -> K+π+p (BR: 6.28%)
```

```
• J/Ψ -> e+e- (BR: 5.9%)
```

```
• Y(1S) -> µ+µ⁻ (BR: 2.48%)
```

Measuring HF particles

- \bullet
- •

Quarkonia

- Calculate invariant mass \bullet of lepton pairs.
- Background subtraction

Deepa Thomas

Heavy-flavor measurements in A-A

* Azimuthal anisotropy (v_n) - information about the initial collision geometry and its fluctuations

* Nuclear Modification Factor (RAA) - energy loss in the QGP

Set fragmentation and hadronisation processes

Collective flow

Observable: azimuthal distribution of particles in the plane perpendicular to beam axis -> sensitive to dynamics at the early stages of collision.

Overlap region is anisotropic - almond shape.

Heavy-quark collective flow

- Heavy quarks with large mass interact enough that they thermalize (equilibrate)?
 - Expected to take longer than light quarks

• Elliptic flow (v₂) of light flavour hadrons at low p_T (< 2-3 GeV/c) explained by hydrodynamical models.

v₂ of charm quarks

Quantify HQ interaction strength at low p_T and constraint its path length dependent energy loss at high p_T

- Low p_T: $v_2(\pi^{+-}) > v_2(D) > v_2(J/\Psi)$
 - v_2 possibly from charm quark flow + recombination with the light-flavor quark
- Charm quarks interact strongly with the medium and participate in its collective expansion

v₂ of beauty quarks

- Low $p_T: v_2(D) > v_2(B)$
- High p_T: v₂(D) ~ v₂(B)
- Open-beauty $v_2 > 0$; bottomonia $v_2 \sim 0$
 - Impact of path-length dependent energy loss and recombination of open beauty?

Sensitive to the fluctuations in the initial energy-density within the overlap region

- $v_3(\pi^{+-}) > v_3(D) > v_3(J/\Psi) \longrightarrow mass hierarchy observed in v_3$ as well.
- Confirms charm quark being kinetically equilibrated in the QGP medium.

- Centrality trend similar for D mesons and charged particles \bullet
- V₂: strong centrality dependence —> collision geometry and viscosity effects.
- v₃: weak centrality dependence —> expected from fluctuations in collision geometry.

v₂ at LHC and RHIC

$v_2\,$ of D mesons at different collision energies at LHC and RHIC show similar p_T dependence.

Nuclear Modification factor

<N_{coll}> : Average number of binary nucleon-nucleon collisions Y_{pp} : Yield of a particle in proton-proton collisions Y_{AA} : Yield of a particle in nucleus-nucleus collisions

 $R_{AA} < 1$ -> charm undergoes energy loss in GQP R_{AA} (0-10%) < R_{AA} (30-50%) < R_{AA} (60-80%) at intermediate and high pt Hotter and denser medium in central Pb-Pb collisions compared to peripheral collisions.

Deepa Thomas

R_{AA} of D mesons

R_{AA} of D mesons

 R_{AA} of D mesons at different collision energies at LHC and RHIC show similar p_T dependence. -> interplay of p_T spectra shape and collision energy/initial temperature.

Mass hierarchy of energy loss

Deepa Thomas

R_{AA} of Charmonia

- LHC: increasing suppression with centrality up to N_{part}~100, followed by a constant R_{AA} due to regeneration effects.
- RHIC: increasing suppression with centrality; smaller effects of regeneration.

R_{AA} of Charmonia

- LHC: increasing suppression with centrality up to N_{part}~100, followed by a constant *R*_{AA} due to regeneration effects.
- **RHIC**: increasing suppression with centrality; **smaller effects of** regeneration.

• Larger suppression for $\Psi(2S)$ compared to $J/\Psi \rightarrow$ factor of 2

- Similar p_T dependence
- Models including recombination describe data.

R_{AA} of Bottomonium

ALI-PUB-483051

- Strong suppression of Y(1S) and Y(2S) observed in central Pb-Pb collisions.
- Transport models without regeneration compatible with data.

R_{AA} of open and hidden HF

- Charm: same trend in the full p_T range.
- Beauty: difference at low p_T ; same trend at high p_T .

Jet structure and fragmentation

The hard scattered partons propagates through the QGP —> jet shower itself evolves; jet constituents interact with the medium modifying the shower.

Jet fragmentation in AA

Study the modification of jet fragmentation in QGP

 Radial distribution of D⁰ in jets - D⁰ further away from jet-axis in Pb-Pb compared to pp.

 • HF electron - hadron correlations - Enhancement of yield on near-side in Pb-Pb compared to p-Pb
 —> Energy loss goes into low p_T particles

e+ e- like fragmentation

• Phenomenological models (cluster and string model) based on parametrization using e+ e- data

Recombination / Coalescence

- High parton density in QGP favors hadronization by recombination of quarks
 - dominant at low momentum
- Affects momentum distribution and azimuthal anisotropy of hadrons, and enhances baryon/meson ratios

$$\vec{p} = \sum \vec{p}_{quark}$$
 $v_n^{hadron} = \sum v_n^{quark}$

Hadronization

6 GeV/c pion from 1x 10 GeV/c quark fragmentation 6 GeV/c pion from 2x 3 GeV/c quark recombination

6 GeV/c proton from 3x 2 GeV/c quark recombination C)

Hadronization using baryons

Studying heavy-flavour hadronization mechanism using Λ_c

• Λ_{c}^{+}/D^{0} in Pb-Pb collisions higher than in pp -> model calculations with fragmentation and coalescence favors data.

- * Heavy quarks are excellent probes to study the properties of QGP.
- Heavy quark interaction and energy loss studies using charm and beauty hadrons.
 - ✤ In-medium energy loss —> mass hierarchy seen
 - Charm quarks participate in the collective expansion of the medium
- Study of jet-fragmentation and hadronization.
 - Indication of modification in the QGP.
- Several new heavy-flavor measurements anticipated in Run3&4 at the LHC and at RHIC
 –> exciting times ahead.

LHC:

Run3

ALICE: New ITS, MFT, TPC readout chambers and fast interaction trigger -> high precision measurements including beauty hadrons possible.

LHCb: SMOG upgrade -> high precision charm measurements at different $\sqrt{s_{NN}}$.

LS3 for Run 4

ATLAS: New ITK —> Heavy-flavor jet measurements

CMS: Upgrade Inner tracker -> Heavy-flavor measurements at low p_T

Deepa Thomas

Future prospects

RHIC:

sPHENIX: extensive heavy-flavor physics including measurements of b-jets and full B meson reconstruction

Φ~5m

New measurements and techniques in the next talk by Gian Michele Innocenti

Backup

How to study HF

- Open heavy-flavour
- Quarkonia
- Di-leptopns

Di-lepton pairs (electron-positron pairs)

- From correlated semi-leptonic decays of heavy-flavor hadrons.
- Probe full p_T range of heavy-quark pairs and contain complementary information about the initial correlation of heavy quarks.
- HF decays dominate in the intermediate mass range (1.03 < m_{ee} < 2.86 GeV/c²). \bullet

