Techniques for heavy-flavor (HF) measurements: strategies, challenges, and future directions

Gian Michele Innocenti CERN/MIT

JETSCAPE online summer school 2023 24/07/2023

Overview of the talk

Intro to heavy flavors in hadronic collisions

Soft HF physics with "minimum– bias detectors" HF physics in "triggered" mode up to high p_T

New opportunities for heavy-flavor jets

H-.T. Ding et al., <u>arXiv 1504.05274</u> W. Busza, et al., <u>ARNPS, Vol.</u> <u>68:339-376, 2018</u>

Hot QCD matter with heavy quarks

$$\label{eq:mc} \begin{split} m_c &\sim 1.5 \ \text{GeV} \\ \textbf{\Lambda}_{\text{QCD}} &\sim 200 \ \text{MeV} \\ \textbf{T}_{\text{QGP}} &\sim 300 \ \text{MeV} \\ \textbf{m}_{u,d,s} &\lesssim \textbf{T}_{\text{QGP}} \end{split}$$

Hadronizes at the boundary of the QGP phase: →probing the mechanisms of hadronization

H-.T. Ding et al., <u>arXiv 1504.05274</u> W. Busza, et al., <u>ARNPS, Vol.</u> <u>68:339-376, 2018</u>

Hot QCD matter with heavy quarks

→ Conserved and traceable witness of the QGP evolution (no "thermal production) → Experimentally accessible at any p_T via fully-reconstructed decays

Soft HF physics with "minimum-bias detectors"

"Soft" heavy-flavor physics with minimum bias HI collisions

- low-p_T hadrons (D⁰, Λ_c , Ξ_c ..) with small secondary vertex displacements
- small signal/background \rightarrow "un-triggerable" events

Techniques:

1) Machine learning techniques + Particle Identification for improved selection performances

2) Large "minimum-bias" statistics and outstanding tracking/vertexing performance,

 \rightarrow new analysis techniques (data processing, skimming, analysis) and detector technology

S

Low p_T charmed baryons: one of the biggest challenges

Secondary-vertex analysis not possible with Run 2 ALICE DCA resolution

pK⁰s <u>without</u> secondary-vertex reconstruction \rightarrow

- BDT with PID and "topological" variables
- New tabular data structure + ML (link) for local processing and optimization ~ TB of data

 $\rightarrow \Lambda_c/D^0$ ratio in PbPb and pp: stronge sensitivity to hadronization in a high-partonic density environment

S

Low p_T charmed baryons: one of the biggest challenges

Secondary-vertex analysis not possible with Run 2 ALICE DCA resolution

\rightarrow pK⁰_s <u>without</u> secondary-vertex reconstruction

- BDT with PID and "topological" variables
- New tabular data structure + ML (link) for local processing and optimization ~ TB of data

ALICE, arXiv:2112.08156v1

 $\rightarrow \Lambda_c/D^0$ ratio in PbPb and pp: strongest sensitivity to hadronization in a high-partonic density environment

First Λ_c/D^0 ratio in central PbPb collisions with ALICE

Increase of the Λ_c / D⁰ ratio

in PbPb vs pp at intermediate p_T

→ constraining new hadroproduction mechanisms in PbPb

"recombination" of quarks from independent hard scatterings?

"heavy-flavor" upgrades: ALICE in Run3/4 and sPHENIX

Increased low p_T impact-parameter resolution: with the new inner tracking system (ITS2 and later ITS3)

Increased rate capabilities with the new TPC readout (GEM): ~ 50-100x more PbPb statistics in **continuous-readout** mode

Continuous-readout mode for ALICE and sPHENIX

Data are <u>not</u> recorded event-by-event but \rightarrow stream of data for fixed time intervals! Challenges: event-track association, reduce storage needs, increase processing efficiency, ...

ALICE offline-to-Online (0²) data processing system

- Tabular ("flat") data format for both reconstruction and analysis (Apache Arrow)
- Extreme data volume reduction (already performed while taking data)

Synchronous reconstruction (during data taking)

- first-course event reconstruction and calibration
 - \rightarrow data-size reduction!

Asynchronous step (after data taking)

 final calibration and vertex/ track reconstruction \rightarrow output stored in AODs

_		_	
_		_	
_			
		_	

A new analysis framework for HF analyses

Flat-tables as data format

→ efficiency and compatibility with a continuous stream of data

optimized data format for minimizing storage needs

→ only decay tracks indices saved instead of the full HF candidate

Suitable for both offline and online processing

→ designed to be used for proton-proton heavy-flavor tagging

Optimized/ready for ML techniques

For more detail: V. Kucera et al. CHEP 2021 proceedings

HF physics in "triggered" mode up to high p_T

Heavy-flavor physics in "triggered" mode

Challenges:

- extend high- p_T reach of HF hadrons and HF-jets
- fully reconstructed beauty hadrons

Techniques:

→exploit general-purpose HEP experiments (calorimetry)→new triggers for heavy-flavor in heavy-ion collisions

An example: HF measurements in heavy-ions with CMS

B-hadron analyses in heavy-ion collisions with e.g. B⁺ \rightarrow J/ ψ K⁺ \rightarrow $\mu^+ \mu^-$ K⁺

- → exploit outstanding muon capabilities of CMS
- \rightarrow direct access to the energy loss of b quarks

HF measurement <u>up to high-p</u>_T

b-jet and D⁰ jet-based triggers in heavy-ion collisions

hardware triggers with jet-background subtraction

- → upgrade of the Level-1 trigger system
- "Online" HQ tagging using software (High-Level) triggers

Online D⁰-triggers in PbPb collisions

 \rightarrow high-p_T D⁰ mesons of a factor about 100 in PbPb collisions

CMS Collaboration, Phys. Lett. B 782 (2018) 474 B. Kreis, G.M. Innocenti et al., 2016 JINST 11 C01051

Level-1 calorimeter trigger upgrade for CMS (Stage 1)

→ A single board to process the entire calorimeter and allow for complex algorithms (e.g. jet subtraction) at Level-1

Regional Calorimeter Trigger

New insights into charm E_{loss}

 $R_{AA} << 1 \rightarrow$ charm quarks strongly interact with the hot medium, and lose a sizeable amount of energy!

$$R_{AA} = \frac{1}{N_{coll}} \frac{dN/dp_{T}(AA)}{dN/dp_{T}(pp)}$$

R_{AA}=1: no modification

High-p_T region accessible with D⁰ triggers!

New constraints on flavor dependence of E_{loss}

Charged hadrons D⁰ mesons **B**⁺ mesons b→J/ψ

vanishing mass-dependence at high-p_T \rightarrow only possible with D⁰-triggers!

"Structure" of charm-jets in PbPb collisions

- → Enabled studies of jets with heavy-flavour hadrons

 \rightarrow Sensitive to mechanism of charm diffusion inside the QGP medium \rightarrow First insights into the inner structure of HF jets

• In PbPb D^o "pushed" far from the jet cone \rightarrow to be confirmed by future measurement

Transverse momentum balance of b jet pairs

b-jets show an increased p_T-asymmetry in PbPb consistent with in-medium Eloss

CMS, JHEP 03 (2018) 181

Magnitude of the effect is similar for b jets and inclusive jets

Heavy-flavor jets: a new territory for heavy-ion physics

 Textbook-grade characterization of in-medium splitting functions? Time-space evolution of jet quenching? New tools for characterizing hadronization mechanisms?

Fully-reconstructed D⁰ mesons as proxy for c quarks

Exploiting recent reclustering and "grooming" techniques \rightarrow First study of the p_T-balance (z_g) of the first splitting of the c-quark

First measurement of the $c \rightarrow cg$ splitting function in vacuum

Exploiting recent reclustering and "grooming" techniques \rightarrow First study of the p_T-balance (z_g) of the first splitting of the c-quark

 \rightarrow fewer "p_T"-symmetric splittings for <u>c-quarks</u> than <u>gluons</u> as expected in the presence of dead-cone effect

First constraints on the $c \rightarrow cg$ splitting function in pp collisions and benchmark for future heavy-ion measurements

P. Ilten, N. L. Rodd, J. Thaler, M. Williams, Phys. Rev. D 96, 054019 (2017) L. Cunqueiro, M. Ploskon, Phys. Rev. D 99, 074027 (2019)

Searches for "new" hadronization in pp collisions with HF jets

Longitudinal momentum fraction carried by the Λ_{c}

 \rightarrow Hint of softer fragmentation for Λ_c (baryon) w.r.t. D⁰ (meson)

→ Not consistent with in-vacuum fragmentation

Hadronization universality is broken already in pp! $\sigma(pp \rightarrow H_QX) = PDF \otimes \sigma(pQCD) \otimes D^{vacuum}(z,Q^2)$ ALICE collaboration, arXiv.2301.13798

Future: characterization of $c \rightarrow cg$ splittings in the medium

 $P_{med}(c \rightarrow cg)$

"Follow" the heavy quark by tracing the fully reconstructed heavy-hadron

 \rightarrow "grooming" to suppress non-perturbative splittings \rightarrow explored in a first pp D⁰-tagged jets study (link)

Measurements of z_g (and other substructure variables) for D⁰ tagged, B⁺ tagged jets in pp and heavy-ions: \rightarrow First direct constraints on $P_{med}(c \rightarrow cg)$ and $P_{med}(b \rightarrow bg)$

P. Ilten, N. L. Rodd, J. Thaler, M. Williams, Phys. Rev. D 96, 054019 (2017) L. Cunqueiro, M. Ploskon, Phys. Rev. D 99, 074027 (2019)

ALICE, arXiv:2208.04857, submitted to PRL

Future: "Boosted" $g \rightarrow c\overline{c}$: a new probe for quenching studies

Only heavy quarks → fully traceable, stronger theoretical control $\tau_{g \to c\bar{c}}^{\text{lab}} \sim \frac{1}{\Omega} \frac{E_g}{\Omega} = \frac{E_g}{\Omega^2}$ \rightarrow **Boosted** (time-delayed) \rightarrow **splitting occurs in the medium**

 \rightarrow developed with the CERN theory group led by Dr. Urs Wiedemann

"Boosted" $g \rightarrow c\overline{c}$: a new probe for quenching studies

→ pQCD formalism (BDMPS-Z) to calculate $P_{g \rightarrow c\bar{c}}^{med}$

G.M. Innocenti, U. Wiedemann et al., arXiv:2209.13600, submitted to PRL G.M. Innocenti, U. Wiedemann et al., JHEP 01 (2023) 080

broadening on the individual quarks

- 1.0 - 0.8 - 0.4 - 0.2

- 0

"Boosted" $g \rightarrow c\overline{c}$: a new probe for quenching studies

→ pQCD formalism (BDMPS-Z) to calculate $P_{g \rightarrow c\bar{c}}^{med}$

→ Gluons that would not split in the vacuum, can split due to the interaction with the QGP

- 1.0 - 0.8 - 0.4 - 0.2

Toward measurements of $g \rightarrow c\bar{c}$ enhancement in HI collisions

Experimental strategy:

- $c\bar{c}$ -tagged jets \rightarrow almost pure source of $g \rightarrow c\bar{c}$
- $N_{iets}^{c\bar{c}}/N_{jets} \propto P_{g \rightarrow c\bar{c}}^{med}$

Measurements of $N_{jets}^{c\bar{c}}/N_{jets}$ in PbPb/AuAu and pp collisions: → by observing this new signature, a crucial test for our theoretical understanding of jet quenching

Up to ~30% increase as a consequence of modified $g \rightarrow c\bar{c}$ splitting function

More differential studies of the $g \rightarrow c\overline{c}$ and $g \rightarrow bb$ splittings

QGP length L

Measurements of the substructure properties of the two HQ-tagged subjets in pp, PbPb, and AuAu:

 \rightarrow characterization of $P_{g \rightarrow c\bar{c}}^{\text{medium}}$ and $P_{q \rightarrow b\bar{b}}^{\text{medium}}$

Using gluon formation time as a time/space ruler: \rightarrow test the predicted $\langle k^2 T \rangle$ broadening of high-pT partons in the hot medium

$$\langle q^2 \rangle_{med} \sim \hat{q} L_{charm}$$

 \rightarrow we need accurate simulations that can model the parton shower modifications of heavy quarks in the QGP

Future tools: DNN techniques for flavor tagging in HI

Multi-label classification algorithms for tagging of:

- c-quark, b-quark, $g \rightarrow c\bar{c}$ and $g \rightarrow b\bar{b}$
- \rightarrow based on DNN and BDT techniques

 \rightarrow O(1000) signal increase w.r.t. $D^0\overline{D}^0$ -tagging technique \rightarrow new opportunities for c-jet correlation measurements in HI

Conclusions and outlook

Over the last decade, we witnessed a revolution in the techniques of HF reconstruction and analysis:

- → HF techniques boost the theoretical and experimental control of most high-density QCD studies
- → How can we maximize the impact of heavy-flavor observables in the future?

One of the key elements is the availability of accurate phenomenological models and simulations:

- good description of both soft (e.g. diffusion) and hard heavy-quark interactions (in-medium splitting modifications)
- capable of producing predictions for HF jet, HF jet-substructure observables, HF-jet correlations with isolated photons...

of most high-density QCD studies bles in the future?

ark interactions (in-medium splitting modifications) observables, HF-jet correlations with isolated photons...

Conclusions and outlook

Over the last decade, we witnessed a revolution in the techniques of HF reconstruction and analysis:

- → HF techniques boost the theoretical and experimental control of most high-density QCD studies
- → How can we maximize the impact of heavy-flavor observables in the future?

One of the key elements is the availability of accurate phenomenological models and simulations:

- good description of both soft (e.g. diffusion) and hard heavy-quark interactions (in-medium splitting modifications)
- capable of producing predictions for HF jet, HF jet-substructure observables, HF-jet correlations with isolated photons...

JETSCAPE can play a crucial role in supporting future jets and HF-jet measurements!

of most high-density QCD studies **bles in the future?**

ark interactions (in-medium splitting modifications) observables, HF-jet correlations with isolated photons...

thank you for your attention!

BACKUP SLIDES

BACKUP: ALICE Run3

Distortion fluctuations in the ALICE TPC

GEMs release <u>slow</u> ions (backflow) in the TPC: (from up to 8000 PbPb collisions)

→ distort the EM fields inside the drift region

 \rightarrow time-dependent deviations (~ mm/cm) from the ideal electron trajectories ("distortion fluctuations")

→ A multi-dimensional time-dependent regression problem (~video recognition) not solvable with traditional techniques

A big challenge: distortion fluctuations in the ALICE TPC

GEMs release <u>slow</u> ions (backflow) in the TPC: (from up to 8000 PbPb collisions)

→ distort the EM fields inside the drift region

→ ~ cm deviations from the ideal

electron trajectories ("distortions")

→ A multi-dimensional time-dependent regression problem (~video recognition) not solvable with traditional techniques

Distortions are time-dependent ("fluctuations")

e.g. fluctuations in the multiplicity of PbPb events:

Integrated over phi

800 600 O

First working calibration for distortion fluctuations with DNNs

Training inputs:

4D (time+space) ion charge densities in each TPC point

E. Hellbär, G.M. Innocenti, Maja

Accuracy <u>achieved</u> ~200µm, comparable to TPC detector resolution!

 \rightarrow default strategy for Run 3 heavy-ion data taking

 \rightarrow applicable to sPHENIX TPC

Supported by:

- Polish Ministry + CERN grant (DN-WFM.92.56.2022.SB), PI: G.M. Innocenti, L. K. Graczykowski
- First Cloud Broker Pilot proposal. PI: G.M. Innocenti et al.

UNets trained on GPUs

Predicted quantities:

4D (time+space) dependent distortions in each point of the TPC

Kabus et al., CHEP 2021 Proceedings

E. Hellbär, G.M. Innocenti, Maja Kabus et al., CHEP 2021 Proceedings

Prototype for a DNN-based correction for the TPC distortions

Correction accuracy ~ detector resolution (~200µm) → DNNs can be effectively used to correct this effect!

 \rightarrow The same strategy could be applied in sPHENIX, which will also suffer from distortion fluctuations!

E. Hellbär, G.M. Innocenti, Maja Kabus et al., <u>CHEP 2021 Proceedings</u>

BACKUP: ALICE 3 in Run5/6

A new heavy-ion experiment for the '30

→ Shaped the physics program and the detector design of ALICE 3 at the LHC

ALICE 3: a high-rate, high-resolution experiment **|n|**<**4** for rare heavy-flavor probes in light and heavy ions

One highlight from a broad physics program

"Rutherford-like" experiment with $D^0\overline{D}{}^0$ correlations

→ partonic "structure" of the hot medium

→ Tracking and vertexing with μ m-accuracy over $|\eta|$ <4

- → superconducting magnet with forward dipoles
- \rightarrow Hadron PID from low (TOF) to high p_T (Cherenkov)

ALICE 3 Letter of Intent, <u>CERN-LHCC-2022-009</u>, <u>arXiv:2211.02491</u> Lol submitted in October '21 Review concluded in March '22

One highlight from a broad physics program

"Rutherford-like" experiment with $D^0\overline{D}^0$ correlations

 \rightarrow partonic "structure" of the hot medium

\rightarrow Tracking and vertexing with µm-accuracy over $|\eta| < 4$

- \rightarrow superconducting magnet with forward dipoles
- \rightarrow Hadron PID from low (TOF) to high p_T (Cherenkov)

ALICE 3 Letter of Intent, CERN-LHCC-2022-009, arXiv:2211.02491 Lol submitted in October '21 **Review concluded in March '22**

The new (bending) pixel technology at the core of ALICE 3

Ultra-light ("massless") sensors with <0.05 X₀

- large sensors with "stitching" techniques
- "bendable" when thinned below ~20-40 μm

Impact parameter resolutions for tracks of about 1 GeV of a few µm!

Prototype for the ITS3 upgrade

And it works! as proven by dedicated test beams after irradiation (ITS3 prototype)

ALICE ITS3 Letter of Intent: ALICE-PUBLIC-2018-013 ALICE ITS3, arXiv.2105.13000 ALICE ITS3, arXiv.2212.08621

BACKUP: HF analyses

CMS in Run 3 at the LHC and sPHENIX at RHIC

→ Most complete detectors for jets, photons, heavy-flavour hadrons → access to heavy-ion collisions at very different energies (5.5 TeV vs 200 GeV)

CMS at the Large Hadron Collider:

High-luminosity, full "barrel" coverage $|\eta| < 2.4$

- Large acceptance tracking $|\eta| < 2.4$ in Run 3
- Muon detectors, ECAL and HCAL
- Outstanding trigger system

sPHENIX at **RHIC**:

- Time-Projection Chamber (GEM readout)
- \rightarrow 240 billion AuAu events in continuous readout mode
- MVTX vertex detector (based on ALICE ITS2 technology)
- \rightarrow impact parameter resolution ~20 µm for p_T = 1 GeV/c

Flavor tagging in CMS

mis-id rate -tt events AK4jets (p_ > 30 GeV) DeepJet DeepCSV DeepCSV RNN **10**⁻¹ DeepCSV with DeepJet input b vs udsg b vs c 10^{-2} **10**⁻³ 0.6 0.2 0.5 0.7 0.9 0.3 0.4 0.8 b-jet efficiency

E. Hellbär, G.M. Innocenti, Maja Kabus et al., <u>CHEP 2021 Proceedings</u>

BACKUP SLIDES gluon splitting and time structure

Monte Carlo studies with Pythia 8

- Anti-k_T "full" jets with FastJet (R=0.4)
- one $D^0\overline{D}^0$ per jet
- only prompt D⁰ contribution considered (c \rightarrow D⁰)

- Fully reconstructed hadronic D⁰ decays

Challenging measurement:

 \rightarrow Based on expected yields, the measurement could be within reach with HL-LHC

 $L_{int} = 0.5 \text{ fb}^{-1} \text{ pp} \sim 10 \text{ nb}^{-1} \text{ PbPb}$ (no quenching)

• But also $c\bar{c}$ -tagging techniques high-p_T jets or tagging of semi-leptonic charm decays \rightarrow sample ~ entire $c\bar{c}$ statistics

Yoctosecond structure of the QGP with top quarks

 \rightarrow study differentially the space-time evolution of the medium created in heavy ion collisions $\langle \tau_{\text{tot}} \rangle = \gamma_{t,\text{top}} \tau_{\text{top}} + \gamma_{t,W} \tau_W + \tau_d$

L. Apolinário, J.G. Milhano, G. P. Salam, C. A. Salgado, Phys. Rev. Lett. 120, 232301 (2018)

 \rightarrow effect of quenching observed via the shift in the invariant mass of the m_{ii} of the diet decays

BACKUP SLIDES LHC long-plan program

Longer-term LHC schedule (03/2023)

From http://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Г			,	2	~			•				Т				1			2	-	<u> </u>			Т				,	2				-	<u>, </u>				Γ				2			2									
				2	U	2		L								2	.(J	2	2	2								2	C	J.	2	J	5								2	C).	2	4	-							
J	F	Μ	A	M	J	J	A	S	0	Ν	D	J	F	M	1 A	۱N	1	J	J	A	S	С	1	D	J	F	Μ	Α	١M	1]]	J	Α	S	0	N	D	J	F	M	1 /	۱	1]]	J	ן נ	4	S	0	Ν	D	J	F	Μ	A
														L																	1																							
														L																			R	lι	ır	ו ו	3																	
														L																								۲																
														L																																								

2030	2031	2032	2033	
JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMA
Ru	n 4			54

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

