



RAINER J FRIES TEXAS A&M UNIVERSITY

### • Hadronization in QCD

- How to make hadrons in five different ways
- Hybrid Hadronization
- Hadronization in JETSCAPE and XSCAPE



# PART I: HADRONIZATION IN QCD

## WHAT'S THE DEAL WITH HADRONIZATION?

- The fundamental degrees of freedom in QCD (quarks and gluons) form bound states at low energies.
- This true also in QED, but there is an added complication in QCD: Confinement.
- Quarks and gluons *must* be in color singlet bound states, i.e. mesons or baryons.

 $\Rightarrow$  Every simulation or event generator with parton physics must know how to get the partons from hadrons and how to turn partons back into hadrons (hadronization).

• Confinement is not understood from first principles.



### HADRONIZATION $\leftrightarrow$ QCD AT LARGE DISTANCES

### • Confinement can be seen on the lattice:



Static heavy quark potential at different temperatures (Karsch et al.)

### $\circ$ Phenomenology: Dual Meissner Effect in QCD vacuum leads to flux tubes $\Rightarrow$ string picture!





$$V(r) = -\frac{a}{r} + Kr$$

# THE CHALLENGE

In the absence of first principle calculations we need to model hadronization.

### Models should:

- Obey relevant observation laws and symmetries.
- Enforce confinement.
- Implement as many phenomenological properties of QCD as possible.



### THE ROLE OF COLOR

- $\circ$  QCD color is based on the group SU(3).
- We are not interested in color degrees of freedoms, our world is "white". Calculations thus typically sum or average over color degrees of freedom  $\rightarrow$  "color factors".

| $\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ | $\lambda_2=egin{pmatrix} 0&-i\ i&0\ 0&0 \end{bmatrix}$              | $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ $\lambda_3 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$                                                | $\begin{pmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 0 \end{pmatrix}$               |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| $\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ | $\lambda_5 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ i & 0 \end{pmatrix}$ | $\begin{pmatrix} -i \\ 0 \\ 0 \end{pmatrix}$                                                                                               |                                                                        |
| $\lambda_6 = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}$     | $\lambda_7=egin{pmatrix} 0&0\0&0\0&i \end{pmatrix}$                 | $\begin{pmatrix} 0\\ -i\\ 0 \end{pmatrix}$ $\lambda_8 = \frac{1}{\sqrt{3}} \left( \begin{pmatrix} 1\\ -i\\ \sqrt{3} \end{pmatrix} \right)$ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ . |

- Parton based Monte Carlo's typically employ the correct color factors for perturbative processes. In addition, there might be a need to track the "direction" of a parton is SU(3) as well: e.g. we might want to track which partons can form color singlets for hadronization.
- Instead of the full SU(3) information partons are assigned color tags in an  $N \rightarrow \infty$  approximation.







# PART II: HOW TO MAKE HADRONS IN FIVE DIFFERENT WAYS

### THE HYDRO ANGLE

- In the long wave-length, large time, large volume limit of QCD we do not care about individual partons and hadrons. We only want to know average, thermodynamic quantities.
- Applies for fluid dynamic simulations for the bulk of heavy ion collisions!
- It is sufficient to know the equation of state (+ any necessary transport coefficients) around  $T_c$  from lattice QCD or experiment.
- For an event-by-event description a hypersurface at a lower temperature can be sampled to create hadrons.
- This avoids the much more challenging particle-byparticle modelling required in parton transport models!



# **INDEPENDENT FRAGMENTATION**

- A first-principle approximation based on QCD factorization, but the necessary fragmentation functions are not calculable (even lattice is hard).
- Proper operator definition. E.g. quark fragmenting into a hadron H:

$$D_{q/H}(z) = z \int \frac{dy^{-}}{4\pi} e^{-iP^{+}y^{-}/z} \left\langle 0 \left| q(0)a_{H}^{+}(P^{+})a_{H}(P^{+})\bar{q}(x^{-}) \right| 0 \right\rangle$$

J. C. Collins and D. E. Soper, *Nucl.Phys.* 194, 445 (1982)

- Perfect for semi-inclusive pQCD but could be more widely applied as a model.
- The input are partons from a hard process without final state radiation!
- Fragmentation functions ~ final state radiation + hadronization





## **CLUSTER HADRONIZATION**

- Primarily for jet Monte Carlos: take fully developed parton showers.
- Force non-perturbative  $g \rightarrow q \bar{q}$  splitting
- Local color neutrality:  $q \overline{q}$  form color-neutral clusters.
- Clusters typically have masses of several GeV; decay into hadrons which can decay further into stable hadrons.





### Implemented in HERWIG.

G. Marchesini, B.R. Webber et al.

## STRING FRAGMENTATION

- Again primarily applied in jet Monte Carlos, most notably PYTHIA and JETSET.
- Keep track of color singlet configurations via color tags.
- In a color singlet string configuration each color tag (except those in junctions) has a matching anti-color tag and vice versa and they are connected by the string.
- Strings terminate in (anti)quarks, (anti)diquarks or can connect to a (anti)junction.
- Gluons are "kinks" in strings.
- (Anti)junctions are objects with three (anti)color tags in a singlet configuration that carry baryon number  $\pm 1$ .
- Simple examples (they could have many gluons or connect to other junctions):







J. Altmann (Monash)

### STRING FRAGMENTATION

- The formalism allows for very complicated string topologies.
- Anything beyond di-junctions can usually not be handled by PYTHIA 8.
- Break strings by pair creation of quarks or diquarks.
- Let the emerging color singlet systems collapse into hadrons.







### QUARK RECOMBINATION

Atomic physics: recombination of protons and electrons into hydrogen + photons



• Photons from the recombination event 300,000 years after the Big Bang.



WMAP

• Nuclear/particle physics: recombination of quarks into mesons and baryons?



o Complications: gluons, confinement, relativistic dynamics, chiral symmetry breaking,...

### QUARK RECOMBINATION

- Quark recombination is as ancient as QCD, but has been in the shadows of string and cluster hadronization (because data was mostly from  $e^+e^-$ , ep and pp machines!)
- Enter high energy heavy ion data ~ 2000.
- Quark recombination could explain anomalous large baryon numbers ("baryon puzzle")
- It could also explain the elliptic flow scaling with valence quark number ("universal quark flow is translated to hadrons via recombination")



# PART III: HYBRID HADRONIZATION

# THE NEED FOR A COMPREHENSIVE MODEL

- We need a model that can work for systems from  $e^+ + e^-$  to A + A.
- Excluding soft bulk hadronization in A + A for now (hydro does an excellent job)
- Strings work very well for jet-like systems (partons at large distances in phase space)
- Quark recombination works well if thermal/background partons are involved in large numbers.
- Enter Hybrid Hadronization, a hybrid of string fragmentation and recombination.
  - K. C. Han, R. J. Fries, C. M. Ko, Jet Fragmentation via Recombination of Parton Showers, Phys.Rev.C 93, 045207 (2016)
- Interpolates smoothly in between, two limits:
  - $\circ~$  Dilute systems  $\rightarrow$  Dominance of string fragmentation
  - $\circ$  Dense systems  $\rightarrow$  Dominance of quark recombination



Use a physics criterion to separate the domains: recombination probabilities vanish for large phase space distances

### HYBRID HADRONIZATION WORK FLOW

#### Input:

Provide partons with virtualities below some cutoff, with spacetime information and color tags

> Recombination Step: Provisionally decay gluons into  $q\bar{q}$ . Go through the system sampling the recombination probabilities for all possible qqbar and q-q-q bound states.

> > Intermediate Step: Recombined hadrons and remnant partons in a string system (only color singlets were removed).

> > > Fragmentation Step: Remnant partons tend to be farther apart in phase space. Fragement using PYTHIA 8.

# HYBRID HADRONIZATION WORK FLOW IN A MEDIUM

#### Input:

Provide partons with virtualities below some cutoff, with spacetime information and color tags

> Recombination Step: Provisionally decay gluons into  $q\bar{q}$ . Go through the system sampling the recombination probabilities for all possible qqbar and q-q-q bound states.

Bath of thermal partons

Recombination with thermal partons

Intermediate Step: Recombined hadrons and remnant partons in a string system (only color singlets were removed).

Remnant strings with thermal partons

Fragmentation Step: Remnant partons tend to be farther apart in phase space. Fragement using PYTHIA 8.

## SETTING UP THE RECOMBINATION PROBLEM

- Quarks/antiquarks = wave packets in phase space
- For simplicity: Gaussian wave packets around centroid phase space coordinates  $(\vec{r}_i, \vec{p}_i)$ , of given width  $\delta$ . Color and spin information might be available (otherwise treated statistically).



Short range interaction modeled by isotropic harmonic oscillator potential of width  $1/\nu$ .
 Use the Wigner formalism in phase space. We need angular momentum eigenstates.

### **COALESCENCE PROBABILITIES**

- Example: Mesons
- We sum over magnetic quantum number *m*. (we do not track the spin polarization of hadrons)
- Probabilities depend on the relative coordinates of the wave packet centroids, called r and q here.
- $\circ$   $\theta$  = angle between r and q.





### **COALESCENCE PROBABILITIES**

• Probabilities can be written in terms of just two variables: total phase space distance squared v and total angular momentum squared t.

$$\begin{split} v &= \frac{\nu^2 r^2}{2} + \frac{p^2}{2\hbar^2 \nu^2} \,, \\ t &= \frac{1}{\hbar^2} \left[ p^2 r^2 - (\mathbf{p} \cdot \mathbf{r})^2 \right] = \frac{1}{\hbar^2} L^2 \end{split}$$

$$\mathcal{P}_{00} = e^{-v}, \mathcal{P}_{01} = e^{-v}v, \mathcal{P}_{02} = \frac{1}{2}e^{-v}\left(\frac{2}{3}v^2 + \frac{1}{3}t\right) \mathcal{P}_{10} = \frac{1}{2}e^{-v}\left(\frac{1}{3}v^2 - \frac{1}{3}t\right)$$

- t makes an intuitive connection between the relative angular momentum of the incoming quarks and the quantum number l of their bound state.
- The total recombination probability also takes into account quark spins (always statistically) and quark color.
- Color factors are determined by color tags. Thermal partons and shower partons with random color are initialized with color tag 0.

Both are states with the same energy given by N=2k+l=3

22



# **REMNANT PARTONS: STRING REPAIR**

 Recombination only removes color singlets. Remaining strings "snap together" the right way automatically.



- Remnant partons with color tag 0 (e.g. from LBT) must be introduced into strings; unused gluons are restored.
- If the initial system was not a color singlet extra partons must be introduced to balance color (this could be beam partons, thermal partons, or fake partons with zero momentum).

### **REMNANT STRINGS: FRAGMENTATION**

- Hand remaining string systems to PYTHIA 8 for fragmentation.
- Hadronic resonances are presumably important channels in hadronization (both through string fragmentation and recombination). In JETSCAPE decays of excited states can happen in PYTHIA or by invoking SMASH.

- Remnant partons tend to be farther removed from each other in phase space.
- $\circ e^+e^-$  example:
- As intentioned fragmentation dominates this diluate system, in particular for the jet core.



### ADDING A MEDIUM

- The formalism stays the same, just include the additional partons!
- Some shower partons (e.g. LBT) arrive with randomized color (color tag 0)
- HH can process "negative partons" separately. They are the "holes" left in the medium through processes like q (shower) + g (medium) -> q (shower) + g (shower). Important for background subtraction.
- Thermal partons can be added, or will be sampled from a  $T = T_c$  hypersurface or a brick.
- Recombination from only thermal partons, or strings with only thermal partons are currently disabled. On the flip side, all shower partons are always hadronized.

### **IN-MEDIUM JETS: SPACE-TIME CONSIDERATIONS**

- Sampled spatial positions of shower partons after shower evolution for 100 GeV jets (arb. normalization)
- Here: JETSCAPE:pGun+MATTER



### **IN-MEDIUM JETS: SPACE-TIME CONSIDERATIONS**

- Sampled spatial positions of shower partons after shower evolution for 100 GeV jets (arb. normalization)
- Here: JETSCAPE:pGun+MATTER+LBT+Brick

Shower partons inside QGP are absorbed by the medium or accumulate on the hypersurface; color is randomized

The jet starts in QGP; the temperature is set to drop below  $T_c$  after 4 fm/c



# PART IV: HADRONIZATION IN JETSCAPE

# THE PLACE OF HADRONIZATION IN JETSCAPE/XSCAPE/



# JETSCAPE/XSCAPE OPTIONS

- There are three options for hadronization: colored, colorless, and hybrid hadronization.
- Colored and colorless hadronization are both pure PYTHIA 8 string fragmentation but with different implementations (honoring or discarding color tags). They can not add medium partons.
- In a nutshell:

|           | Uses color tags | Can deal with<br>missing color tags | Can use or generate<br>thermal partons | Can handle<br>junctions/baryon |
|-----------|-----------------|-------------------------------------|----------------------------------------|--------------------------------|
| Colored   | YES             | NO                                  | NO                                     | NO                             |
| Colorless | NO              | YES                                 | NO                                     | NO                             |
| Hybrid    | YES             | YES                                 | YES                                    | YES                            |

Colored hadronization is only recommended for vacuum systems, like p+p.

# JETSCAPE/XSCAPE OPTIONS

 Set the module you want in <JetHadronization> in the XML-file together with any parameters you want to customize.

<!-- Jet Hadronization Module -->

<JetHadronization>

<name>colored/colorless/hybrid</name>

- You will play mostly with Hybrid Hadronization and a little bit with Colorless Hadronization later.
- Caution, the version of HH used at the school is not yet official, it will be in the JETSCAPE
  3.6 release

## HYBRID HADRONIZATION OPTIONS

• A few options for HH:



<reco\_Mlevelmax>1</reco\_Mlevelmax> <reco\_Blevelmax>1</reco\_Blevelmax> <reco\_goldstone>0</reco\_goldstone> Highest excited energy level for mesons and baryons in recombination. (0=ground state; 1=p-wave allowed)

Pions and kaons have anomalously small masses and don't fit well into the recombination scheme.

- Most of these are obtained with the older, official version of Hybrid Hadronization.
- For vacuum systems, HH is designed to work as well as string fragmentation, with little changes through the addition of recombination. This mostly works out.



 In systems with a medium recombination, with medium partons becomes a strong contribution at low to intermediate momentum, growing with medium size.





- We recover a key signature of quark recombination: baryon/meson enhancement in a medium
- Hadronization is sensitive to medium flow.



35

 This is a result with the new version: the background of negative hadrons can be successfully subtracted.



# ON TO THE HANDS-ON SESSION

• A few exercises running different models for  $e^+e^-$  and a jet in a brick.