Physics at the EIC

and the connections to the RHIC Cold QCD Program

Xiaoxuan Chu, BNL

JETSCAPE Online Summer School July 28th 2023

The EIC facility

What is the EIC:

A high luminosity $(10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1})$ polarized electron proton / ion collider with $Vs_{ep} = 28 - 140 \text{ GeV}$

What is included in the EIC Project:

collider & 1 interaction region and 1 general purpose detector

What can the EIC Facility support:

> 2 decades increase in kinematic coverage in x and Q^2

Xiaoxuan Chu

Beam set up:

- Leptons: 5, 10, 18 GeV
- Protons: 41 GeV, 100 275 GeV
- d, A: 41 GeV, 100 110 GeV
- He-3: 41 GeV, 100 166 GeV
- transverse and longitudinally polarized p, He-3 and later d
- longitudinally polarized electrons

The EIC physics

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

How do the nucleon properties emerge from them and their interactions?

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quarks and gluon interactions of the providence of t

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even the proton?

Xiaoxuan Chu

JETSCAPE Summer School

How to access partons in DIS

Detect scattered lepton (DIS) in coincidence with identified hadrons (SIDIS)

 \rightarrow one can measure the correlation between different hadrons as fct. of p_t, z, h

→ needs fragmentation functions to correlate hadron type with parton

 \rightarrow Detector: PID over a wide range of η and p

W-exchange: direct access to the quark flavor; no FF − complementary to SIDIS → Kinematics reconstruction through the detection of hadronic state

 \rightarrow Detector: large rapidity coverage and large Vs

Best observable to access parton kinematics tag partons through the sub-processes and jet substructure

- \rightarrow di-jets: relative p_t \rightarrow correlated to k_t
- \rightarrow tag on PGF: charm production
- → Detector: large rapidity coverage and PID

JETSCAPE Summer School

What is needed to address the EIC physics

DIS: deep inelastic scattering

- Electron beams provide unmatched precision of the electromagnetic interaction
- Direct, model independent determination of parton kinematics of physics processes

Important kinematics

$$Q^{2} = s \cdot x \cdot y$$
$$Q^{2} = -q^{2} = -(k - k')^{2}$$
$$x = \frac{Q^{2}}{2P \cdot q}$$

Q²: resolution power; y: inelasticityx: momentum fraction of the struck quark from the nucleon

Transverse resolution $\Delta r \sim \frac{1}{Q}$ $Q = 100 \ GeV, \Delta r = 0.002 fm$

Collinear parton distribution functions (PDFs)

momentum direction of the beam, or longitudinal direction,

or z

1D partonic structure

JETSCAPE Summer School

What we've learnt from HERA

atter of Defipitionized Farton (distribution functions

L. Zheng et al., PRD 89 (2014) 074037

Gluon saturation at the EIC

CGC predicts the back-to-back suppression and a broadening phenomena from gluon saturation EIC simulation: Constrain sat. and nosat. models with limited statistics of 1 *fb*⁻¹

• Strong suppression is reproduced by sat. model, not by nosat. model (EPS09 nPDF) including energy loss

L. Zheng et al., PRD 89 (2014) 074037

Sudakov effects in ep and eA

- Sudakov effect can also cause the broadening phenomena but not suppression, it exits in all collision systems
- Agreement between Sudakov effects and parton shower in ep collisions

Scanning x-Q² phase at the EIC

By increasing the center-of-mass energy and detecting forward production, one can access small x region

Current knowledge of saturation

- Suppression at low p_T not high p_T
- No broadening is observed, why?
- In fixed $x Q^2$ phase space, suppression is dominantly affected by various A:
 - Suppression linearly depends on $A^{1/3}$

How about broadening?

∆**≬ [rad]**

- IS: the dominate effect leading to a broad away-side peak
- Considering intrinsic k_T , PS, p_T^{frag} , and detector smearing, challenging to observe broadening phenomena
- Future measurement at the EIC with di-charged hadron: near-side peak used to calibrate

	Near-side $\Delta \phi$ RMS	Away-side $\Delta \phi$ RMS
$\overline{k_T}$	0.21	0.25
$k_T + IS$	0.30	0.72
$k_T + IS + FS$	0.65	0.81
$k_T + \mathrm{IS} + \mathrm{FS} + p_T^{\mathrm{frag}}$	1.00	1.00

Full phase space with RHIC, the LHC and EIC

- RHIC result is an important basis for very similar measurements at the future EIC
 - Nonlinear effects seen with different complementary probes (eA and pA), one can claim a discovery of saturation effects and their universality
- Data from the EIC+ RHIC + the LHC access the full phase space: *LHC data → low x at high Q²; EIC and RHIC data → low/moderate Q²

*ALICE FoCal and LHCb pushing the small-*x* program at LHC

How about the 1D polarized structure?

How to decompose the spin of the proton

Xiaoxuan Chu

3D structure of the nucleon

images from semi-inclusive scattering

Sivers function

- Sivers function is one of the eight leading twist transverse momentum dependent parton distribution functions (TMDs)
- Sivers function can be constraint from both ep and pp collisions with proton beam transversely polarized
- EIC and RHIC data: used to test the fundamental prediction of the sign change of the Sivers asymmetry

Results from the EIC and other colliders

JETSCAPE Summer School

Jets at the EIC: to study the PDFs of the photon

Photon PDFs rarely known:

- Unpolarized: extracted from PLUTO, AMY, etc.
- Polarized: zero knowledge
- Critical input for EIC

Dijet reconstructed from PYTHIA ep:

•
$$x_{\gamma}^{rec} = \frac{1}{2E_e y} (p_{T1}e^{-\eta 1} + p_{T2}e^{-\eta 2})$$

- Resolved $x_{\gamma} < 1$
- Direct $x_{\gamma} = 1$

Unpol. PDFs: measuring resolved dijet cross section

• $\frac{d^2\sigma}{dxdp_T} = f_{\gamma} \otimes f_p \otimes \sigma_{ij}$

Pol. PDFs:

•
$$A_{LL} = \frac{\Delta \sigma}{\sigma}, \frac{d^2 \Delta \sigma}{dx dp_T} = \Delta f_{\gamma} \otimes \Delta f_p \otimes \sigma_{ij}$$

20

Resolved photon at EIC

- Low x_{γ}^{rec} helps to select resolved photon channels
- Validated with HERA data •

 $1 f b^{-1}$ statistic at EIC provides high precision constraining unpol. photon PDFs; first measurement of pol. photon PDFs simulated at the EIC

12

Flavor tagging with jets at the EIC

Fragmentation functions: flavor tagging→ advantage of PID at EIC; test universality with the results from other colliders:

- Probe the flavor of the originating parton by the particle specie of the leading hadron
- This method can be performed in different collision systems

Summary

0

Х

xp

1D-structure in *Z* **direction:**

- Collinear parton distribution $f(x, Q^2)$
- Longitudinally polarized distribution $\Delta f(x, Q^2)$

- Gluon saturation: EIC data is essential to understand the nonlinear QCD dynamics of the gluon
- EIC data will provide large impact of constraining quark and gluon helicity, and orbital angular momentum

1+2D-structure in Z + XY direction:

- Transverse momentum dependent parton distribution, TMDs, $f(x, k_T, Q^2)$
- Polarized TMDs \rightarrow Sivers function

Applications of jets at the EIC:

- Dijet photoproduction used to constrain unpol. and pol. photon PDFs
- Particles within jets: flavor tagged fragmentation functions

Thanks for your attention!

Back up

EIC Double Ring Design Based on Existing RHIC Facilities		
Hadron Storage Ring: 40, 100 - 275 GeV	Electron Storage Ring: 5 - 18 GeV	
RHIC Ring and Injector Complex: p to Pb	9 MW Synchrotron Radiation	
1A Beam Current	Large Beam Current - 2.5 A	
1160 bunches \rightarrow 9 ns bunch spacing		
Light ion beams (p, d, ³ He) polarized (L,T)	Polarized electron beams	
Nuclear beams: d to U	Electron Rapid Cycling Synchrotron	
Requires Strong Cooling: new concept $ ightarrow$ CEC	Spin Transparent Due to High Periodicity	
High Luminosity Interaction Region – one on project – 2 nd one possible		
25 mrad Crossing Angle with Crab Cavities		

Easy to be observed in heavy nucleus

Total transverse gluon density by a factor of $A^{1/3}$ for a nucleus with mass number A

It's easier to access saturation in heavy nuclei, how?

JETSCAPE Summer School

Complementarity for 1st-IR & 2nd-IR

	1 st IR (IP-6)	2 nd IR (IP-8)
Globally:	same accelerator highlights and challenges	
Geometry:	ring inside to outside	ring outside to inside
Crossing Angle:	25 mrad	S5 mrad → more difficult to get acceptance at high <i>n</i>
	diffe	rent blind spots
	different far-for	ward detector acceptances
Luminosity:	same lur same center-o	ninos <mark>ity at both IRs</mark> of-mass energy coverage
IR-Design:	0.2 GeV < p _T < 1.3 GeV	2 nd focus → improved low p_T acceptance at far-forward Roman Pots $x_L \sim 1 \rightarrow p_T \sim 0$
Experiment:	comple different sub	mentarity through odetector technologies