1 - Massachusetts Institute of Technology

2 - University of Minnesota

Machine learning infrastructure for gravitational wave physics

Alec Gunny^{*,1}, Ethan Marx¹, William Benoit², Deep Chatterjee¹, Michael Coughlin², Philip Harris¹, Erik Katsavounidis¹, Eric Moreno¹, Dylan Rankin¹, Ryan Raikman¹, Muhammed Saleem²

Gravitational wave physics

Large scale astrophysical events ripple the fabric of spacetime

International Gravitational Wave Observatory Network (IGWN) set up to detect, locate, and characterize events

Measure timeseries of unitless quantity - gravitational wave **strain**

Requirements for ML deployment

Training

- Load timeseries data from disk and efficiently move it to GPU
- Leverage simulations to create robust datasets
- Implement signal processing operations on GPU

Inference

- Offline produce predictions on O(months-years) of data
- Online produce predictions on real-time data in O(ms)
- Stream timeseries data into NN
- Heterogeneous backends/dtypes

Design Goals

Intuitive - maps on to familiar, physically meaningful concepts Composable - hierarchical layers of abstraction support new use cases seamlessly **Integrated** - ecosystem of tools following same standards and nomenclature **Efficient** - make the most out of parallel computing resources

m14gw - Torch training utilities

Transitioning to larger datasets

Chunked loading of background data

Tradeoff between memory, I/O, and randomness

Fully on-the-fly generation of waveforms for unlimited training signal data

See impact in upcoming PE talk/poster

Only have sine gaussian implemented for now⁴

ml4gw - Torch training utilities

More training background requires more flexibility when whitening data

×10⁻²¹

0.5

0.6

0.7

0.8

0.9

Time [seconds] from 2020-01-12 23:59:12 UTC (1262908770.0)

1.2

1.1

1.3

1.4

Whiten data using background PSDs computed on-the-fly

Faster than previous implementation because executed in frequency domain - FFTs are faster than large convolutions

ml4gw - Torch training utilities

Example use case: dataloading for binary black hole detection (aframe)

Complex data flow simplified by intuitive transform Modules

Efficient GPU implementations ensure strong utilization, shift bottleneck to NN forward/backward step

hermes - Inference-as-a-Service deployment tools

Example deployment: binary black hole detection (aframe)

hermes is a set of APIs for assisting in the acceleration, export, serving, and requesting of models using Triton Inference Server. New features include:

hermes - Inference-as-a-Service deployment tools

Example use case: online deployment of DeepClean noise subtraction algorithm

Ensemble versioning allows newly trained models to be validated/deployed asynchronously

Example use case: offline deployment of aframe

ML4GW

ML4GW			
README.md			
Tools to make training and deploying neural networks in se	rvice of g	ravitational wave physics simple and accessible to all!	
Includes a couple particular applications under active resea	rch		
Pinned			
📮 DeepClean (Public)		📮 aframe (Public)	
		Detecting binary black hole mergers in LIGO with neural networks	
● Python 🟠 2 😵 4		● Python ☆ 10 😵 13	
📮 ml4gw (Public)		📮 hermes (Public)	
Duthon 4 8 9 6		\square Puthon $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ 3	

https://github.com/ML4GW

New releases coming this week

Lots more to be done - always looking for collaborators!

More use cases \rightarrow more robust tools for everyone

Thank you!