

GWAK: Gravitational-Wave Anomalous Knowledge

Eric A. Moreno, Ryan Raikman, Katya Govorkova, Deep Chatterjee, Alec Gunny, Ethan Marx, Muhammed Saleem, Will Benoit, Rafia Omer, Michael Coughlin, Philip Harris, Erik Katsavounidis, Dylan Rankin

A3D3 MMA Subgroup - July 10th, 2023

Binary Mergers

Produces: **time-series** [1-D strain + auxiliary channels]

Binary Mergers

Produces: **time-series** [1-D strain + auxiliary channels]

What are anomalies?

Anomalies are unmodelled waveforms

- GWs have been detected in Matched-Filter pipelines from:
 - Binary Black Holes (BBH)
 - Binary Neutron Stars (BNS)
 - Black Hole Neutron Star (BHNS)
- Anomalous signals:
 - Core Collapse Supernovas (CCSNe)
 - Neutron Star Glitches
 - Cosmic Strings
 - NSs collapsing to BHs
 - Gravitational Bremsstrahlung
 - Other stochastic processes

GW Dataset - Nontrivial

- Length measurements are ~ $10^{-22} m$
- Constantly changing detector noise usually clouds signal
- Detector glitches occur every O(10 sec) resembling GWs in excess power!

Unsupervised Learning: Detection

Quasi-Anomalous Knowledge - QUAK

[Park et al. (2021) (JHEP)]

Quasi-Anomalous Knowledge - QUAK

QUAK -> GWAK

Real-Time Animations

QUAK Spaces on Supernovae

Quantitative Results

- LSTM-AE currently best performing model
 - Model architecture input size favors shorter signals
- Dedicated searches perform well at low-SNR
- Able to consistently identify midrange SNR anomalies at incredibly low FAR
- Test on full LIGO O(3) incoming
- Ideas for real-time O(4) in the works

Quantitative Results

- LSTM-AE currently best performing model
 - Model architecture input size favors shorter signals
- Dedicated searches perform well at low-SNR
- Able to consistently identify midrange SNR anomalies at incredibly low FAR
- Test on full LIGO O(3) incoming
- Ideas for real-time O(4) in the works

