Applications of Machine Learning to Gravitational Wave Physics: Detection and Parameter Estimation

Ethan Marx¹, Alec Gunny¹, William Benoit², Deep Chatterjee¹, Rafia

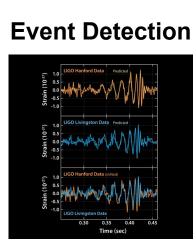
Omer², Eric Moreno¹, Ryan Raikman¹, Manos Cholayil¹, Katya

Govorkova¹, Muhammed Saleem², Dylan Rankin¹, Philip Harris¹,

Michael Coughlin², Erik Katsavounidis¹

¹Massachusetts Institute of Technology, ²University of Minnesota

The authors acknowledge NSF grant OAC-2117997

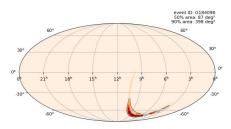


Identify astrophysical gravitational wave (GW) signals with high confidence

Machine learning offers low latency, high throughput, scalability

aframe - Framework for optimizing neural networks to detect compact binary coalescences (CBCs) in GW strain

Parameter Estimation



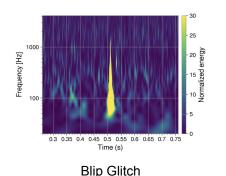
Extract information about astrophysical source (e.g. sky localization)

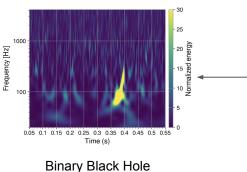
Machine learning offers rapid inference for informing electromagnetic follow-up of events

mlpe - Parameter estimation of *unmodeled* GW sources using normalizing flows

Data Augmentation: Noise

Sample kernels from each interferometer *independently* to create more noise instances

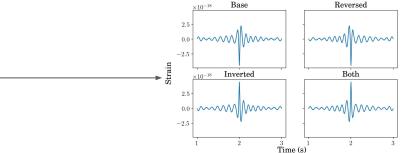




Hanford Livingston Virgo

Oversample glitches, which can mimic true astrophysical signals

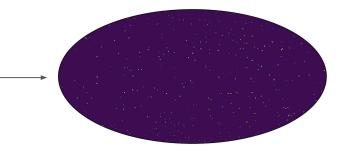
Reverse and *invert* noise samples to create more diversity of noise instances

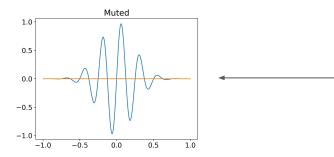


3

Data Augmentations: Waveforms

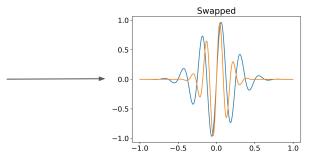
Randomly project waveforms using different sky localizations at training time - leverage larger effective dataset





Zero out one interferometers waveform - label as noise to enforce coincidence

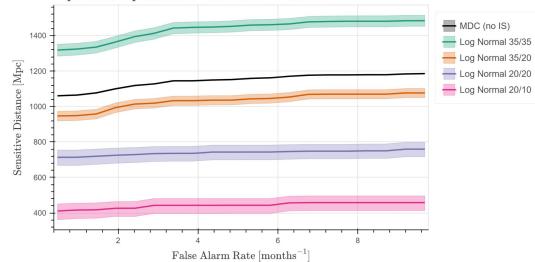
Replace one interferometers waveform with that of another template - label as noise to enforce coherence



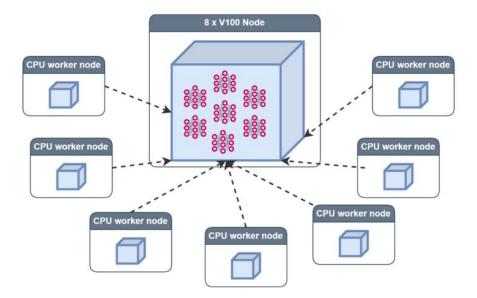
Performance Metric

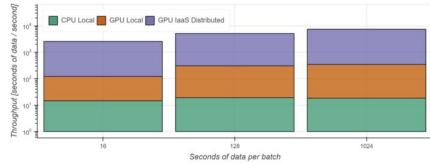
Sensitive Volume - Measure effective volume V at some false alarm rate F probed by search algorithm to a population ϕ of sources

$$V\left(\mathcal{F}
ight)=\int doldsymbol{x}doldsymbol{\Lambda}\,\,\epsilon\left(\mathcal{F};oldsymbol{x},oldsymbol{\Lambda}
ight)\phi\left(oldsymbol{x},oldsymbol{\Lambda}
ight)$$



GPU Distributed Inference





Parallelize inference of segments across multiple GPUs to allow analysis of larger volumes of data Scalable: have seen approximately linear returns with the number of GPUs

Looking Forward

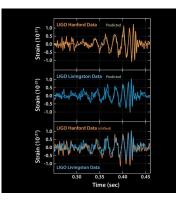
1. Online deployment

2. Scaling up quantity of background data

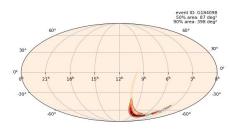
3. End to end analysis of previous observing runs

Stop by my poster later today to discuss details!

Event Detection



Parameter Estimation



Identify astrophysical gravitational wave (GW) signals with high confidence

Machine learning offers low latency, high throughput, scalability

aframe - Framework for optimizing neural networks to detect compact binary coalescences (CBCs) in GW strain Extract information about astrophysical source (e.g. sky localization)

Machine learning offers rapid inference for informing electromagnetic follow-up of events

mlpe - Parameter estimation of *unmodeled* GW sources using normalizing flows

Unmodeled "Burst" Sources

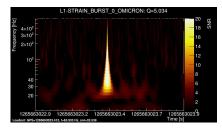
Minimally or poorly modeled GW emission

e.g. Core Collapse Supernovae, Neutron Star Glitches

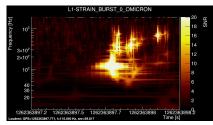
Use a complete basis of minimal uncertainty wavelets to decompose data, and search for coherent excess power between multiple detectors

$$h_{+}(t) \propto \cos(2\pi f_0(t-t_0) + \phi_0)e^{(-t-t_0)^2/\tau^2}$$

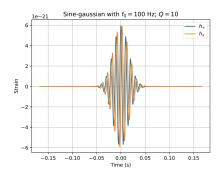
 $h_{\times}(t) \propto \sin(2\pi f_0(t-t_0) + \phi_0)e^{(-t-t_0)^2/\tau^2}$



Example GW emission from cosmic string cusp



Example GW emission from core collapse supernovae simulation

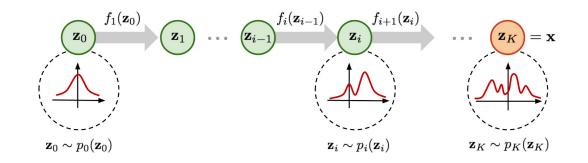


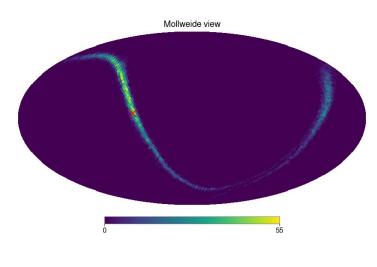
Simulation Based Inference

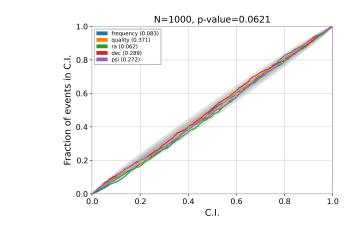
Simulate data from the likelihood, train neural network to approximate posterior

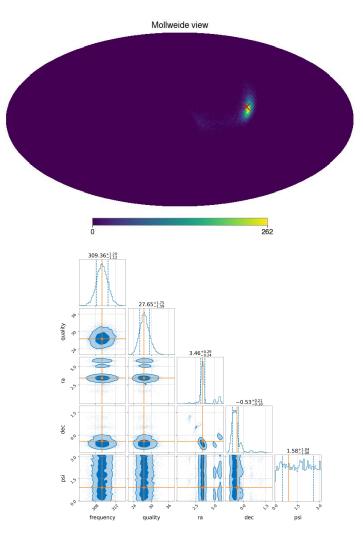
$$d \sim p(d| heta) \quad d = h(heta) + n \ q_{\phi}(heta|d) \sim p(heta|d) \ _L pprox -rac{1}{N} \sum_{i=1}^N \log q_{\phi}(heta^{(i)}|d)$$

Normalizing flows: invertible transforms map simple distribution to complex distribution









Looking Forward

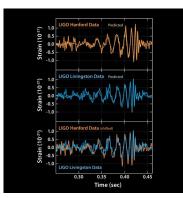
1. Validate model on astrophysical waveforms

2. Exploit symmetries for faster training convergence

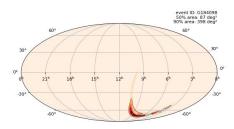
3. Paper in prep

See Deep Chatterjee's poster today for more details!

Event Detection



Parameter Estimation



Identify astrophysical gravitational wave (GW) signals with high confidence

Machine learning offers low latency, high throughput, scalability

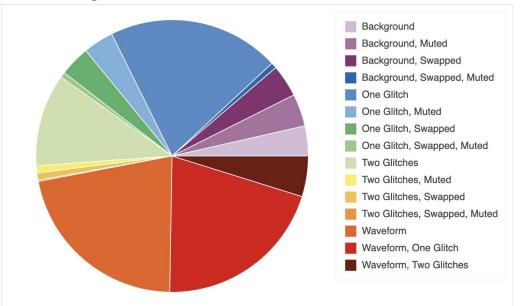
aframe - Framework for optimizing neural networks to detect compact binary coalescences (CBCs) in GW strain Extract information about astrophysical source (e.g. sky localization)

Machine learning offers rapid inference for informing electromagnetic follow-up of events

mlpe - Parameter estimation of *unmodeled* GW sources using normalizing flows

Taxonomy of Training Batch

Kernel Categories



Taxonomy of training data determined by hyperparameters that can easily be searched