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Purdue activities in A3D3

e We are developing machine learning algorithms combined with
heterogeneous computing within each of the three reconstruction tiers of
the CMS detector, the L1 Trigger, the High Level Trigger, and offline
reconstruction.

o End-to-end GNN triggers for rare tau lepton decays

o Improved object reconstruction offline using GNNs: Semi-Supervised pileup
mitigation

o Close collaboration with Prof. Pan Li’s group in ML for science
development: interpretable GNN, domain adaptation, end to end
efficient GNN

e Involved in development and maintenance of software toolkits that enable
the deployment of these algorithms into the existing software and hardware
systems of CMS.

o HLS4ML: deployment of GNN on FPGAs for low latency,
o SONIC : deployment and integration in cms distributed computing
infrastructure



Triggering T—3u Decays with GNNS

t— 3 decay heavily suppressed in the Standard
Model
o BR ~ 0(107®) predicted, current best limits 2.1 x
108
o Many BSM physics models enhance
BR(1—3p)~0(10%)
~ 1 x 10t expected in full HL-HLC dataset
o Low transverse momentum, very forward
o Very hard to trigger with conventional
techniques
Solution: end-to-end reconstruction of T—3p
topology using GNNs
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GNN Graph Construction

CMS muon detectors are arrayed in 4 stations that muons traverse from the inside-out

Information from detectors within one station are aggregated into track segments we use as nodes for
the graph. First three stations are used.

Virtual Node:
« = [z, eta, bend, r] @ connected to all other

Edge Formation: Node ‘ nodes ic?r.?lobal
\ connecuvi
Intra-station: dR = sqrt(An?+A¢?) < 1 Y
Inter-station: All permutations ‘

Features:

Feature vectors assigned to nodes and

edges encode positional information and
bending angle

Xeqqe = [A2, Aeta, Abend, Ar, Aphi] | Station 1 Station 2 Station 3

B. Simon, H. Yun, Y.Zhong, JS °



GNN Method: Model Architecture
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Trigger Yield (Accepted Events)
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Current model performance

+GNN Score Distribution

GNN is able to confidently separate part of the - e
signal phase space from background SRURDED
Signal events with very few nodes almost i
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e [or details, see Ben’s poster tonight!

implement model on L1 demonstrator at Purdue

e Future plans: Study more signals, anomaly detection,

B. Simon, H. Yun, Y.Zhong, JS
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his 4 ml FPGA implementation

e Model architecture optimized for best performance
o Inthe trigger it will have to run on FPGA with
tight latency constraints

— AUC
recall@1kHz

e Current model is simply too large, have to reduce — recall@10kHz
CompleXity —— recall@30kHz
o Investigating pruning and quantization 1.0

o Found we can prune ~70% of internal nodes
o First tests with quantization aware training in
Brevitas give promising results:
92% of AUROC when going from 32bit float to
8bit ap-fixed precision

o
0

AUC / Recall
I
(o)}

o
~

e HLS4ML package does currently not support Pytorch
Geometric models (Pytorch support also limited) ->

GNNSs not supported in general | | 021
o (Model-specific private implementations exist, e.g. : . : : . . .
by Jav'er’s group) 2115089 1684686 1123686 561843 224737 67421 15507

# of parameters

o  Working with other developers to implement GNN
support in a more generalized way

JS, H. Yun
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ns4am  GNN support in HLS4ML O PyTorch

& PyG
o . : ‘\15(1 y
e GNNs typically implemented using Pytorch Geometric -y
o Limited Pytorch support in HLS4ML prevented
implementation Pytorch Model

of a generalized parser for PyG models
e Re-implemented parsing of Pytorch models in HLS4ML | o
using torch.FX symbolic tracing functionality roreh-Fsympolictracing

o  Converts model into a graph with individual layers as node. !
Can then traverse the graph and pick up layer eprenentation
configurations from the nodes |
e Significantly improves ease of use and types of layers Parse node information  Loop over nodes in graph
supported. New parser will be part of next major HLS4ML |
release (VSO) in QZ(_ISh) List of HLS4ML layer
e Extending this parser to PyG models, in collaboration with configurations
Vladimir Loncar |
o Parsing of PyG models Create layer objects Loop over layers
o  Support for message passing operations (hard to parse |
with symbolic tracing because of nested structure) HLS4ML Model

representation

o Support for new operations like scatter_add in HLS4ML

e First full prototype will be available at the end of summer
JS



Pile Up-Motivation for a semi supervised network
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pileup (PU): multiple proton interactions in the
same bunch-crossing affect many variables: jet
mass, jet pt, missing transverse momentum
(MET)

Can reject charged particles from PU based on
track information. Real problem are the
neutrals. Current best approach in CMS (PUPPI)
weights neutrals based on neighboring charged
particles

new approach: Graphed based semi-supervised
(SSL)

train directly on real data/full simulation,
without worrying about the labels for the ground
truth information

towards to a new direction of fully data-driven pileup mitigation techmque

L. Paspalaki, J. Rodgers o



The network

(a). Construct one graph per event
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(c). Aggregate neighbors’ features and update node

representation with GNN

Semi-supervised approach aims to develop an NN for PU reduction
The Semi-supervision enables the possibility of training on data
Graph architecture builds on the rich graph algorithms already shown

Means that acceleration of graphs leads to a fast algorithm here

First results on CMS fast simulation: 2203.15823
The network is now tested and trained in CMS full simulation

L. Paspalaki, J. Rodgers 11


https://arxiv.org/abs/2203.15823

Performance on physics variables

A Bayesian optimization framework was developed to optimize the physics performance
o o/(1-u) for the jet mass as figure of merit
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Puppi-GNN outperforms the baseline PUPPI algorithm
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Summary and next steps

Puppi-GNN is trained and tested in CMS full simulation
Bayesian optimization techniques were used to improve

the network’s performance

Puppi-GNN outperforms the baseline PUPPI algorithm
Now: Domain Adaptation techniques are considered to
further improve the performance

Check out Jack’s poster tonight for more information!

Future steps-goals: integrate the network in CMSSW and
commissioning using Run 3 data

13



Heterogeneous computing as-a-service

-

@ Network
N
Clients Servers I—I

e Providing access to different accelerators as a
service allows scalable/flexible/modular software
stacks

e SONIC uses Nvidia Triton servers to provide GPU
resources to CMS software workflows

o Developed and tested a miniAOD (one step in CMS
data processing) workflow that offloads 3 ML
inferences to SONIC.

o Performance measurements produced on Purdue
computing resources, CMS paper in preparation

o Challenge: Have to create interface to SONIC for each
ML model or algorithm separately

o New group members (Yibo, Yao) will join Ben in
investigating automated “sonification” of workflows

Model A
Model B

D. Kondratyev



Sonic/Triton infrastructure at Purdue Tier-2 center

e CMS software is run on many computing centers worldwide that have to provide Triton servers to enable
SONIC in CMS workflows. Triton servers could also be utilized to enable GPU access for local users.

e Ongoing development efforts: load balancer, dynamic creation / destruction of servers, service to advertise
available servers to jobs, treatment of ML model versions / CMS software versions

e As an alternative to traditional Tier-2 cluster, we are developing a setup in a Kubernetes cluster
o  Run Triton servers as containerized applications.
o  Ultilize industry-grade solutions for our development challenges.

o Example: automatic load balancing setup based on Triton performance metrics adopted from Nvidia’s
implementation.

o Ongoing studies: access to remote GPUs outside of the Kubernetes cluster, load-balancing across
different types of GPUs, model repository solutions (filesystem mount vs. cloud object storage)

Compute average
queue time across
servers.

Spawn additional

server if the time

kubernetes exceeds a given

threshold.
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Conclusions

e Our group aim to use ML to improve physics and
computational performance at all stages of the data pipeline
in CMS, with focus on GNNs

o End-to-end reconstruction of T—3pu decays in the L1
trigger, HLT and offline processing to be studied later

o Semi-supervised learning to improve pileup mitigation in
offline reconstruction workflows

o  GNN support on FPGAs by improving HLS4ML

o Heterogeneous computing as-a-service for CMS offline
workflows using SONIC/TRITON

e Group is continuously expanding, excited to work on many
new ideas going forward
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CMS Data Flow
CMS Experiment

40MHz collision rate

~1B detector channels FPGA filter stack
~Us latency

10s Gb/s
~5 kHz

On-detector
ASIC compression
~100ns latency

10s Tb/s
100s kHz

Worldwide
computing grid
Exabyte-scale
datasets

\ 4

_ _ On-prem CPU/GPU
ML in 3 tiers of data filter farm

processing ~100 ms latency



