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Dewen Zhohg (UIUC) |

NSF Site Visit -
July 11-12 2023 a I3
https://indico.cern.ch/event/1282754

- OAC-2117997 _ https://a3d3.ai/
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Our Group

Mark Neubauer
(Prof)

Markus Atkinson (Postdoc)

Avik ROy (Postdoc)

!

Santosh Parajuli*

GNN-based EF tracking

Explainable Al, FAIR,
Anomaly-aware ML for trigger,
Vector-like quark searches

Postdoc)

@ GNN-based EF tracking

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Dewen Zhong® (prp student)

2

Jared Burleson®

Analog Al, ML Boosted WW
tagging, HH/SH searches in
bbWW decay channel

GNN-based EF tracking,
Vector Boson Scattering,

Boson Polarization-aware ML

Jiangcong Zeng (pho student)

Vector Boson Scattering in
semileptonic decay channel

(PhD student)
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EXPERIMENT

Casey Smith

(ECE, Engineer)

GNN-based EF tracking
on FPGA, VHDL design

Ben Galewsky =

(NCSA Software Engineer) =&

Caching, Columnar Data
Delivery (ServiceX)

* -
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HL-LHC Computing challenge a%jgg:f;;:;:

Efficient computational strategies are paramount for devices in
resource-limited settings, particularly within high-energy physics
experiments.

During the HL-LHC era, 10x more data per second than Run 1 & 2.

HLmD

LHC / HL-LHC Plan
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racking challenge -

Simulated pp collision event in ATLAS during HL-LHC - 100
e Dense environment with O(10k) particles :E\ 20
3 80

E 70

;é; 60

~ 50

40

30

20

10

e Collision pileup <pu>~200 pp interactions q

Reconstruction of 2017 pp data, (s =13 TeV -
in Athena release 21.0.37 tuned for (u) = 30 =
on Intel” Xeon” CPU E5-2630 v3 .

low-u reference runs 10862 luminosity blocks S
B high-y run 335302 463 luminosity blocks .

Run 2 data

llllIlllllllIlIIllIIllllllllIIIIlI[lIlllllllIllll-

O_IlII|IIIIIIIIIIIIIIIIIllllllllllllllllllIllIIIllI_

TR YR vl L
20 30 40 50 60 70 80 90 100

Accelerated Al
Algorithms for
Data-Driven
Discovery

)
luminosity block count

10

Event reconstruction is a computationally-challenging problem for the
(HL)-LHC — Ciritical element for high-quality physics

e Particle tracking takes ~40% of the

reconstruction time



GNNs for Tracking B

e Graph Neural Networks (GNNSs) are a class of geometric deep learning
methods for modeling data dependencies via message passing over graphs

e Detector measurements are represented as nodes. Nodes are associated
with each other by learned edges that represent charged particle trajectories

Graph Neural

Metric 2 » Connected
Learning Q Network Components
| ™ i or
Module ] 4 7‘; S ‘ A cConnecteti
7 & " omponents
e e < = + Walkthrough
Hits Graph Edge Scores Track Candidates
Graph Edge Graph

Construction Classification Segmentation



Event Filter GNN Tracking Efforts aﬁyzﬁ;:gzezs

Goal: to have a full and optimised GNN pipeline implemented and

tested on FPGA

FPGA Strengths over GPUs:

- low-latency inference
- reduced power consumption

Effort to convert python code

for firmware implementation:
- Use HLS4ML or FINN (for metric
learning and GNN) using ITk data,

already explored on TrackML (Elabd

et. al (2022))

- Write VHDL code “from scratch”
(for module map and final track
building)

GNNA4ITk pipeline

Since Spring 2022

( .’ M dule }‘
Edge Scores Track Candidates

Graph Edge Graph
Construction Labeling Segmentation

See: Juetal. (2021)and CTD (2022) for more info

Ongoing and Future Efforts:

- Concerns of limited resources encourages new FPGA studies
- Subgraph construction in regions of detector for module map
- Quantization Aware Training used for metric learning MLP

- Pruning studies on metric learning significant reduction in
model size at maintained efficiency (see CHEP (2023) )



https://ui.adsabs.harvard.edu/link_gateway/2021EPJC...81..876J/doi:10.1140/epjc/s10052-021-09675-8
https://indico.cern.ch/event/1103637/contributions/4821831/
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https://indico.jlab.org/event/459/contributions/11375/

Hybrid Approach to GNN tracking =343

e \With support from the lllinois Quantum
Applications Program, we are working to build
on our GNN tracking with classical GNNs and
the prior work by others on Quantum GNNs
(QGNNSs, e.g. C. Tuysuz, et al) to develop a
Hybrid Neural Network (combining classical &
quantum networks) approach

QGNN Architecture

Q
*ee o00
Node Lo
600 Network _l ¢oo

XX 000

Team

Mark Neubauer
(Prof)

Avik Roy

(Postdoc)
Dewen Zhong
(PhD Student)

Seung Beom Lee
(Undergraduate)

Mason Camp

Undergraduate

S
e
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https://arxiv.org/pdf/2109.12636.pdf

Hybrid Neural Network approach to Tracking

QGNN Architecture

PQC for single layer

@ iy ! Ry|— 1.
°00 200
IR - . Node | | ' ! : _R R
". Network ' ‘ ‘ ’ Y I Y /—f\
eoo N 1Ry I Ryl 7
Hybrid NN Architecture —Ry ° Ry /f\
€ RV
Previous study limited to
0y T+ 7} ! 2 QC simulations (and up to
(b* @ b4 0) - | | c o] 16 qubits), mainly due to
e 180(#) ||Poo@) || -~ |— S thousands of circuit
Voot D Vo @ V] P i o F cap,  €xecutions required by the
B 0) - ’ model

FCNN 1 QNN FCNN 2

Also no noise included in

the simulations


https://arxiv.org/pdf/2109.12636.pdf

his 4 ml FastML Lab’ a%}z

S

Real- tlmeand ace erated ML for

fundaméntai sciences

. | A

his4dml is a firmware implementations of machine learning
algorithms using high level synthesis language (HLS) in
FPGAs with ultra low latency.

Simplify the hardware implementation process.
Support for popular machine learning libraries.

Compatibility with diverse hardware platforms such as
FPGAs and ASICs.

Deploy models in real-time and embedded applications.

eeeeeeeeeeeee
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Analog Al

Application of analog computing techniques to perform EI&
artificial intelligence (Al) tasks.

e Analog computing operates on continuous physical quantities, @+
such as voltages or currents.

e Inherent parallelism and efficiency of analog computations @
e More energy-efficient, Lower latency to accelerate Al algorithms

Working on new tools for Analog Al in his4mi

e People Involved: Neubauer, Zhong (UIUC) with
collaborators from UIC, FNAL and the Discovery
Partners Institute

e In early stage: starting with a simple MLP primitive
implemented on a crossbar array

e Synergies with memristors and CMOS devices also
being explored 10



https://dpi.uillinois.edu/
https://dpi.uillinois.edu/

Mixed Analog/Digital Pathway

L

TensorFlow

Model training hls 4 ml

his4mi
Internal
representations

hls4ml
C code

Model design Model pruning

“Analog” Primitive:
a2d (N,precision)
d2a (N,precision)

Mat-Vec operation

Fab “Primitives”

TSMC Crossbar, 1-bit memristor

Sonos, Crossbar, 5-bit memristor

OTA

FPAA

28nm CMOS 1b SRAM “crossbar”

11



Machine Learning architectures R

Discovery

Input input: ?

Custom ANN model ) BN

e 16 inputs, with full connecting 4 and 8 nodes Hidden — et I

layers and output is 1 P E

e Quantization weight and activation function of NN model Sy e
and setup output node to 4 bits l

Activation | input: (4.)

fel linea output (4,): ap_fixed<4,4, AP RND,AP SAT>
fel_linear }m it p_| ] =
Activation | input: (4, .

bin_tanhl ["Gupur: (@,) output (4,): ap_int<2>

input: (16,) | weight (16, 4): ap_fixed<1,1>

OOOO000
/
//
/
/8
/
O
|
|
[
|

= 7 = ~
N = 7 ht (4, 8): ap_fixed<1,1
N\ =5 -7 1 (4, eight (4, 8): ap_fixed<1,1>
X \ \ > >'(// \\ o e input: (4,) ;.u;,!x ? ,‘p_lf“,;(l ]:
>3 N Poes go-'8 \\ /7 fc2 %) ias (8,): ap_fixed<l.
77 < tput: (8, . ap fixed<d,d4>
\:\\\\ < 27 N < = output: ( output (8,):  ap_fixed<4,4

0
\

ctivatic input: (8,)
S raon. output (8.): ap_fixed<4,4,AP_RND,AP_SAT>

output: (8,)
Activation | input: (8,)

s output (8,): ap_int<2>
bin_tanh2 ["0u00(8)) ouly ): ap |

input: (8,) weight (8, 1): ap_fixed<1,1>
e bias (1):  ap_fixed<l,1>
output ias (1,): ap_fixed<1,

output: (L) | output (1,): ~ ap_fixed<4,4>

Input Layer e R™ Hidden Layer € R* Hidden Layer e R® Output Layer e R l

Activation input: (1,) } 5 o ] N
output_linear [“gyoue (1) output (1,): ap_fixed<4,4,AP_RND,AP_SAT
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8-T SRAM-Unit Cell

Based off design

e Mf-net: Compute-in-memory sram
for multi-bit precision inference
using memory-immersed data
conversion and multiplication-free
operators

o MC-CIM: Compute-in-Memory With
Monte-Carlo Dropouts for Bayesian
Edge Intelligence

13



Data-Driven

First Layer Analog Representation % T3

Basic Matrix for fc1 layer: Dense | P (16) | weght 16, 4): ap fxed<1, >

fel bias (4,): ap_fixed<l,1>
output: (4,) output (4,): ap_fixed<4,4>

e 16 4-bits input (16 columns)
e 4 4-bits output
e 4 1-bit bias (1 bias column)

All production lines charged are .
accumulated and summed horizontally bit[§
by bits.

Each bit needs to be binary weight.

14



Expectation of analog ML and Goal

Using his4ml to generate analog Al models and
implement analog models to ML-based jet
Tagger.

Provide similar performances as digital hils4ml ML
models.

Further work

Complete the full analog representation for entire
ANN model structure.

Tuning and Optimize the analog Al model
performance for High Energy Physic models and
beyond .

3 4

Background Efficienc:

10°

10-1 4

1072 4

103

hisaml

hms

g tagger, AUC = 93.8%
q tagger, AUC = 90.1%
t tagger, AUC = 96.2%
w tagger, AUC = 95.3%
z tagger, AUC = 94.7%

-—- gtagger, AUC = 92.5%

- qtagger, AUC = 89.2%
—== ttagger, AUC = 95.2%
-== w tagger, AUC = 94.5%
--- ztagger, AUC = 93.5%

g tagger, AUC = 92.5%
q tagger, AUC = 89.2%

-+ ttagger, AUC = 95.1%
--=+ w tagger, AUC = 94.5%

-+ ztagger, AUC = 93.5%

— baseline

==~ pruned, quantized

vvvvv his4ml

0.0

- T T
0.2 0.4 0.6
Signal Efficiency

1.0

or
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