Sleep Spindles as a Driver of Low Latency, Low Power ML in HLS4ML

Hardware Development: Xiaohan Liu (Speaker), Atharva Mattam, Chi-Jui Chen, Lin-Chi Yang, Yan-Lun Huang, Elham E Khoda, Scott Hauck, Shih-Chieh Hsu, Bo-Cheng Lai

Neural Interfaces: Lauren Peterson, Leo Scholl, Amy Orsborn

Neural Processing Algorithms: Trung Le, Eli Shlizerman

07/10/2023

What We Do

Sleep Spindles

- Oscillating signals during sleep or rest
- Believed to contribute to learn

• Goal: Predict and disrupt spindles

System Setup

Latent Factor Analysis via Dynamical Systems (LFADs)

• RNN Variational Autoencoder (RNN VAE)

Pandarinath, C., O'Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., ... & Sussillo, D. (2018). Inferring single-trial neural population dynamics using sequential auto-encoders. *Nature methods*, *15*(10), 805-815.

Tool – HLS4ML

LFADs Architecture - Detail

- LFADs architecture
 O Custom model
- One custom layer
 - Gaussian sampling layer
- One unsupported Keras layer
 - o Bidirectional
- One unsupported arguments
 - GRU initial_state

Layer (type)	Output Shape	Param #
initial_dropout (Dropout)	multiple	0
EncoderRNN (Bidirectional)	multiple	52224
postencoder_dropout (Dropou t)	multiple	0
postdecoder_dropout (Dropou t)	multiple	0
DenseMean (Dense)	multiple	8256
DenseLogVar (Dense)	multiple	8256
GaussianSampling (GaussianS ampling)	multiple	0
activation (Activation)	multiple	0 (unused)
DecoderGRU (GRU)	multiple	24960
Dense (Dense)	multiple	256
NeuralDense (Dense)	multiple	350

Total params: 94,315 Trainable params: 94,302 Non-trainable params: 13

Current Model Architecture

- Removed the gaussian: being developed in parallel
- Recreated LFADs in Keras functional API

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 73, 70)]	0	[]
initial_dropout (Dropout)	(None, 73, 70)	0	['input_1[0][0]']
Encoder_BidirectionalGRU (Bidi rectional)	[(None, 128), (None, 64), (None, 64)]	52224	['initial_dropout[0][0]']
<pre>postencoder_dropout (Dropout)</pre>	(None, 128)	0	['Encoder_BidirectionalGRU[0][0]']
input_2 (InputLayer)	[(None, 73, 64)]	0	[]
dense_mean (Dense)	(None, 64)	8256	['postencoder_dropout[0][0]']
decoder_GRU (GRU)	(None, 73, 64)	24960	['input_2[0][0]', 'dense_mean[0][0]']
<pre>postdecoder_dropout (Dropout)</pre>	(None, 73, 64)	0	['decoder_GRU[0][0]']
dense (Dense)	(None, 73, 4)	256	['postdecoder_dropout[0][0]']
nerual_dense (Dense)	(None, 73, 70)	350	['dense[0][0]']

Total params: 86,046 Trainable params: 86,046 Non-trainable params: 0

Performance Comparison

• Dataset from

- Perich, M. G., Gallego, J. A., & Miller, L. E. (2018). A neural population mechanism for rapid learning. *Neuron*, *100*(4), 964-976.
- Evaluation metric Negative poisson log-likelihood

HLS4ML Implementation - Bidirectional

• Implemented Bidirectional GRU layer

HLS4ML Implementation - GRU Initial State

Implemented initial_state
 Initial state is hidden state of the unit

HLS (LFADs) Model Performance

• Post training quantization (PTQ) with different precision

FPGA Deployment Result

- Current board: Xilinx U55C
- Precision: ap_fixed<16,6>
- Frequency: 200 MHz
- Latency: 41.97 µs

V synthesis	U55C	
HLS version	2022	
BRAM	474 (23.51%)	
DSP	1,869 (20.71%)	
FF	150,882 (5.79%)	
LUT	164.726 (12.64%)	

Multi-block RNN Autoencoders (MRAE)

 Nolan, M., Pesaran, B., Shlizerman, E., & Orsborn, A. L. (2022). Multi-block RNN Autoencoders Enable Broadband ECoG Signal Reconstruction. bioRxiv, 2022-09.

Multi-block RNN Autoencoders (MRAE)

- Reduce FPGA resource utilization
- Increase throughput

Current progress & future work

- Add Gaussian Sampling layer back
- Extend to MRAE

Projects Related to A3D3 in Our Group

Transformer model for Neural signals

- Trung Le, Ethan Jiang, Dennis Yin, Vidhi Desai, Elham E Khoda
- Model done; HLS4ML Transformer layer done

Projects related to A3D3 in Our Group

- Gaussian sampling in HLS4ML
 - Atharva Mattam
 - HLS code done
 - HLS4ML PR528

- Benchmarking HLS4ML vs SystemVerilog
 Caroline Johnson & Waiz Khan
- Algorithm Processing Unit (APU)
 Ethan Jiang, Bowen Zuo

Thank you for listening!

Questions?

