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* Problems: Various distribution shifts in scientific applications
* A detailed example: Pileup Mitigation
* A principled solution: StruRW algorithm

e Future Works



GNN for Science Applications
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Distribution Shift Problems

« What is distribution shift ?
. Training data and testing data distribution are different

_______________________________________________________________

« Exist widely in many scientific applications
= Synthetic data training vs. real data testing
= Data obtained varies in different conditions
" Time period
" Experimental settings (location, environment, noise, ...)
= Measurement standards
= Require task-specific generalization
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* A detailed example: Pileup Mitigation
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Example: Pileup Mitigation

Leading Vertex (LV): Signal of interest
from primary interactions

Pileup (PU): Additional proton-proton
interactions in the same or nearby
bunch crossings

Task: ldentify whether a particle is from
the LV or PU

Challenge: Easy to retrieve labels for
Charged particles; No truth information
for Neutral particles



Example: Pileup Mitigation

A: Let the model train on Charged

particles with given labels, then

infer on Neutral particles
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particles look like testing neutral particles



Example: Pileup Mitigation

A: Let the model train on Charged

particles with given labels, then

infer on Neutral particles

* Intuition: Make training charged
particles look like testing neutral particles

* Approach: Masking strategy

v Assume the shared features have
similar distribution
v’ Mask the unshared features

(a). Construct one graph per event
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= Charged LV label encodin
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(c). Aggregate neighbors’ features and update node

(d). Predict LV/PU representation with GNN



However...

* The shared features may exhibit different distributions
* There could be additional graph structure shift

* Additional generalization cases are needed
e Shift across synthetic and real datasets

* Shift across different pileup level

e Shift over particles within different locations of detector
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* A principled solution: StruRW algorithm
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Problem Formulation

* Categories: Out of distribution generalization (OOD) and domain adaptation (DA)

 Difference:
= OOD: no access to target / testing data

= DA: have access to target / testing data
* Similar goal: Want the model to generalize well on target data

* Focus on: Unsupervised domain adaptation (have access to target feature but no
label information)
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Problem Formulation

* Assumption:
= Covariate Shift: P¢ (X) # Pr(X) and P (Y|X) = Pr(Y|X)
= Label Shift: P (Y) # P7(Y) and Ps (X|Y) = P, (X|Y)
» Conditional Shift: P¢ (X|Y) # Py (X|Y)



Problem Formulation

' Ps(X,Y) # Pr(X,Y) !

* Assumption:
= Covariate Shift: P¢ (X) # Pr(X) and P (Y|X) = P (Y|X)
= Label Shift: P (Y) # P7(Y) and Ps (X|Y) = Py (X|Y)
» Conditional Shift: P¢ (X|Y) # Py (X|Y)

* Common Methodology: Invariant representation learning

7= ¢(X); Ps(Z) = Pr(Z)



Principled solution: StruRW — Problem

 When extending this idea to graph structured data (GDA) ...
* Assumption: Ps (Y) = Pr(Y)

———————————————————————————————————————

_______________________________________

A: Adjacency matrix; X: Node features



Principled solution: StruRW — Problem

 When extending this idea to graph structured data (GDA) ...
* Assumption: Ps (Y) = Pr(Y)
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Principled solution: StruRW — Problem
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Principled solution: StruRW — Methodology

Graph Neural Network (GNN)
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Principled solution: StruRW — Methodology

Consider the one layer Message Passing as aggregating neighborhood
representations to form a multiset
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Methodology: StruRW

Goal: Downsample / resample the elements in multiset to let the source
multiset distribution approximate target multiset distribution

In Practice ...
 Graph structure describes as the edge connection probability
" a3 kXk edge connection probability matrix B with k classes
= Foraclass-i node, nB;; many class-j attributes for j € [k] in the multiset



Principled solution: StruRW — Methodology

Goal: Downsample / resample the elements in multiset to let the source
multiset distribution approximate target multiset distribution

In Practice ...

* Estimate the edge connection probability
* GNN pooling layer in aggregating information in multisets

————————————————————————————————————————————————————

{euws € Elyu = 14,9, = 5} BT can be approximated
[{v € V|y, =i} x [{v € V|y, = j}| w|th pseudo-labels

Bz'j -



Principled solution: StruRW — Methodology

Goal: Downsample / resample the elements in multiset to let the source
multiset distribution approximate target multiset distribution

In Practice ...

* Estimate the edge connection probability
* GNN pooling layer in aggregating information in multisets

ransforms as edge weights from class-j nodes to
lass-i nodes with BT/B on source graph

o -

[{ewv € Elyu =1,y, = 7} BT can be approximated
{v € V|y, =1}| x [{v € V|y, = j}| w|th pseudo-labels

Bz’j -

Hyperparameter: 1 + (1 — A)B /B



Principled solution: StruRW — Methodology
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Principled solution: StruRW — Experiments

Table 2: Synthetic CSBM results. The bold font and the underline indicate the first and second best model respectively, {
indicates the significant improvement, where the mean-1*std of a method > the mean of its corresponding backbone model.

g =0.016 g =0.014 g = 0.012 g =0.01 g = 0.006 g = 0.001
ERM 36.52+3.76  41.62 + 5.92 48.66 + 6.31 57.29+5.28  89.72 + 2.62 100+ 0
DANN 64.25 + 5.69 72.56 + 8.54 79.63 + 6.84 86.20 +8.14  96.88 +1.35 100+ 0
CDAN 67.53 + 4.98 75.38 + 7.46 82.51 + 6.95 89.73+7.44  97.03+1.09 100+ 0
UDAGCN 51.98 + 1.31 57.83 + 3.05 59.74+1.52  65.97+1.66  98.25+ 0.52 100+ 0
EERM 57.36 + 4.52 65.88+3.09 70.124+10.26 72.87+13.70  95.01 + 3.88 100+ 0
MIXUP 62.54 +2.77  69.21 + 2.03 74.92 + 1.56 82.87 + 3.45 96.89 + 0.38 100+ 0
STRURW-ERM  85.24T +1.63 87.92T +1.77 90.26" +£1.05 93.84" +0.98 98.28" +0.14 100+ 0
STRURW-ADV  86.371 £3.92 89.227 +1.83 91.53" +2.41 94.08" £0.98 98.40" +0.34 10040
STRURW-Mix 88.48" +1.93 89.76' +1.15 92.08" +1.13 94.26" +0.99 98.35' +0.23 100+ 0

* Performance decreases with increase in CSS (from smaller g to larger q)

* StruRW-based methods significantly outperform other baselines

especially under large CSS



Principled solution: StruRW — Experiments

Table 4: HEP dataset with different PU conditions and Physical process. The bold font indicate the best model, T indicates
the significant improvement, where the mean-1*std of a method > the mean of its corresponding backbone model.

PU CONDITIONS PHYSICAL PROCESSES
DOMAINS PU30 — 10 PU10 — 30 PU140 - 50 PU50 —» 140 g9 — Z(vv) Z(vv) = gg
ERM 69.83 +0.43 70.73 + 0.46 68.70 £ 0.56 68.28 + 0.65 63.09 + 0.48 66.53 + 1.04
DANN 70.14 4+ 0.52 71.29 4+ 0.58 69.01 £+ 0.42 68.98 £+ 0.63 63.15 = 0.66 66.24 + 0.97

STRURW-ERM  71.35" +£0.76 71.95" +£0.24 69.43" +0.65 69.05+0.36 63.55+0.40 67.73 +0.93
STRURW-ADV 70777 +052 71.96+0.73 69.88" £0.71 70.54+0.84 64.36" +0.58 66.91 +0.67

e StruRW-based methods perform better than baselines

* The smaller gap may be due to the physics task itself being:
" Binary classification

= Multigraph training and testing process



e Future Works



Principled solution: Future Works

e Scientific Application:
= Extend the Pileup Mitigation project to real data setting
= Currently try with some DA techniques to boost pileup mitigation performance

= Seek for more applications that exist distribution shifts

ML on distribution shift
= Elaborate on the StruRW project with more general assumptions

= An OOD benchmark project on various scientific applications (HEP, biology,
material science)



Conclusion

* Distribution shifts are critical problems in scientific domain

* We have proposed series of work to handle distribution shifts
= Masking in Pileup Mitigation project
* More principled StruRW algorithm

* |f are interested in our work
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