

Distribution Shift Problems in Scientific Domains

Presented by Shikun Liu Georgia Institute of Technology Department of Electrical and Computer Engineering

Introduction

• **PI:** Pan Li

• **A3D3 Trainees:**

Siqi Miao Shikun Liu

Georgia Institute of Technology Department of Electrical and Computer Engineering

Focus: Interpretable and generalizable graph machine learning for scientific applications

Content

- Problems: Various distribution shifts in scientific applications
- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

GNN for Science Applications

• Protein binding affinity prediction

[Karimi et al., 2019]

• Jet Tagging in HEP

[Duvenaud et al., NeurIPS 2015] [Li et al., EPJC, 2023]

• Molecular Property Prediction

Fragments most activated by pro-solubility feature

Fragments most activated by anti-solubility feature

Refined based on [Qu, Li, Qian, 2022]

Distribution Shift Problems

• **What is distribution shift ?**

■ Training data and testing data distribution are different

Trained model can not generalize to the testing phase

- **Exist widely in many scientific applications**
	- Synthetic data training vs. real data testing
	- Data obtained varies in different conditions
		- Time period
		- Experimental settings (location, environment, noise, ...)
		- § Measurement standards
	- Require task-specific generalization

§ ……

Distribution Shift Problems

- Exist widely in many scientific applications
	- Synthetic data training vs. real data testing
	- Data obtained varies in different conditions
	- Require task-specific generalization

Molecular property prediction **EXACTE EXACTE:** Detecting signal in HEP

Content

• Problems: Various distribution shifts in scientific applications

- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

Semi-supervised graph neural networks for pileup noise removal

Tianchun Li*, Shikun Liu*, Yongbin Feng*, Garyfallia Paspalaki, Nhan V. Tran, Miaoyuan Liu, Pan Li

Li, T., Liu, S., Feng, Y. *et al.* Semi-supervised graph neural networks for pileup noise removal. *Eur. Phys. J. C* **83**, 99 (2023). https://doi.org/10.1140/epjc/s10052-022-11083-5

- **Leading Vertex (LV):** Signal of interest from primary interactions
- **Pileup (PU):** Additional proton-proton interactions in the same or nearby bunch crossings
- **Task:** Identify whether a particle is from the LV or PU
- **Challenge:** Easy to retrieve labels for Charged particles; No truth information for Neutral particles

How we handle this challenge?

A: Let the model train on Charged particles with given labels, then infer on Neutral particles

Distribution Shift Occurs

Intuition: Make training charged particles look like testing neutral particles

- **Approach:** Masking strategy
- \checkmark Assume the shared features have similar distribution \checkmark Mask the unshared features

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

How we handle this challenge?

A: Let the model train on Charged particles with given labels, then infer on Neutral particles

Distribution Shift Occurs

Intuition: Make training charged particles look like testing neutral particles

- **Approach:** Masking strategy
- \checkmark Assume the shared features have similar distribution \checkmark Mask the unshared features

(d). Predict LV/PU

Neutral label encoding

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

How we handle this challenge?

A: Let the model train on Charged particles with given labels, then infer on Neutral particles

Distribution Shift Occurs

• **Intuition:** Make training charged particles look like testing neutral particles

- **Approach: Masking strategy**
- \checkmark Assume the shared features have similar distribution \checkmark Mask the unshared features

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

How we handle this challenge?

A: Let the model train on Charged particles with given labels, then infer on Neutral particles

Distribution Shift Occurs

• **Intuition:** Make training charged particles look like testing neutral particles

- **Approach:** Masking strategy
- \checkmark Assume the shared features have similar distribution \checkmark Mask the unshared features

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

However…

- The shared features may exhibit different distributions
- There could be additional graph structure shift
- Additional generalization cases are needed
	- Shift across synthetic and real datasets
	- Shift across different pileup level
	- Shift over particles within different locations of detector

More principled and general methodology is needed

- The shared features may exhibit different distributions
- There could be additional graph structure shift
- Additional generalization cases are needed
	- Shift across synthetic and real datasets
	- Shift across different pileup level
	- Shift over particles within different locations of detector

More principled and general methodology is needed

Content

- Problems: Various distribution shifts in scientific applications
- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

Structural Re-weighting Improves Graph Domain Adaptation

Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiu Qiang, Pan Li

Liu, Shikun, et al. "Structural Re-weighting Improves Graph Domain Adaptation." *International Conference on Machine Learning*. PMLR, 2023.

- **Categories:** Out of distribution generalization (OOD) and domain adaptation (DA)
- **Difference:**
	- OOD: no access to target / testing data
	- DA: have access to target / testing data
- **Similar goal:** Want the model to generalize well on target data
- **Focus on:** Unsupervised domain adaptation (have access to target feature but no label information)

- **Categories:** Out of distribution generalization (OOD) and domain adaptation (DA)
- **Difference:**
	- OOD: no access to target / testing data
	- DA: have access to target / testing data
- **Similar goal:** Want the model to generalize well on target data
- **Focus on:** Unsupervised domain adaptation (have access to target feature but no label information)

$$
P_S(X, Y) \neq P_T(X, Y)
$$

$P_S(X, Y) \neq P_T(X, Y)$

- **Assumption:**
	- Covariate Shift: $P_S(X) \neq P_T(X)$ and $P_S(Y|X) = P_T(Y|X)$
	- Label Shift: $P_S(Y) \neq P_T(Y)$ and $P_S(X|Y) = P_T(X|Y)$
	- Conditional Shift: $P_S(X|Y) \neq P_T(X|Y)$
- Common Methodology: Invariant representation learning

 $Z = \phi(X); P_S(Z) = P_T(Z)$

$P_S(X, Y) \neq P_T(X, Y)$

- **Assumption:**
	- Covariate Shift: $P_S(X) \neq P_T(X)$ and $P_S(Y|X) = P_T(Y|X)$
	- Label Shift: $P_S(Y) \neq P_T(Y)$ and $P_S(X|Y) = P_T(X|Y)$
	- Conditional Shift: $P_S(X|Y) \neq P_T(X|Y)$
- **Common Methodology:** Invariant representation learning

 $Z = \phi(X)$; $P_S(Z) = P_T(Z)$

Principled solution: StruRW – Problem

$$
Z = \phi(X) ; P_S(Z) = P_T(Z)
$$

- **When extending this idea to graph structured data (GDA) …**
- **Assumption:** $P_S(Y) = P_T(Y)$

$$
Z = \phi(A, X) ; P_S(Z) = P_T(Z)
$$

A: Adjacency matrix; X: Node features

 $\frac{1}{3}$ Suboptimality of invariant representation learning in GDA $\frac{1}{3}$

Principled solution: StruRW – Problem

$$
Z = \phi(X) ; P_S(Z) = P_T(Z)
$$

- **When extending this idea to graph structured data (GDA) …**
- **Assumption:** $P_S(Y) = P_T(Y)$

$$
Z = \phi(A, X) ; P_S(Z) = P_T(Z)
$$

A: Adjacency matrix; X: Node features

Suboptimality of invariant representation learning in GDA

Principled solution: StruRW – Problem

Graph Neural Network (GNN)

$$
h_v^{(t+1)} = f_{update}\left(h_v^{(t)}, f_{agg}\left(\left\{h_u^{(t)} \mid u \in N_v\right\}\right)\right)
$$

$$
h_G = \text{POOL}\left(\left\{h_v^{(L)} \mid v \in V\right\}\right)
$$

 $f_{update}(\dots)$

 $f_{agg}(\dots)$ Sum or

mean or

max

 α

Consider the one layer Message Passing as aggregating neighborhood representations to form a multiset

 $\{h_0, h_1, h_0, h_1, h_1, ...\}$ $\{h_0, h_1, h_1, h_1, h_1, ...\}$ and the state of the state

Different cardinality and distribution of elements in multisets

 $\{h_0, h_0, h_0, h_0, h_1, ...\}$ $\{h_1, h_1, h_0, h_0, h_0, ...\}$

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

Consider the one layer Message Passing as aggregating neighborhood representations to form a multiset

 $\ddot{\ddot{\bf i}}$ $\ddot{\bf i}$ $\ddot{\bf i}$

 ${h_0, h_1, h_0, h_1, h_1, ...}$ and distribution of ${h_0, h_0, h_0, h_0, h_1, ...}$ $\{h_0, h_1, h_1, h_1, h_1, ...\}$ elements in multisets $\{h_1, h_1, h_0, h_0, h_0, ...\}$ Source **Different cardinality** Target and distribution of

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

Consider the one layer Message Passing as aggregating neighborhood representations to form a multiset

 $\ddot{\ddot{\bf i}}$ $\ddot{\bf i}$ $\ddot{\bf i}$

 ${h_0, h_1, h_0, h_1, h_1, ...\}$ and distribution of ${h_0, h_0, h_0, h_0, h_1, ...\}$ ${h_0, h_1, h_1, h_1, h_2, ...\}$ elements in multisets ${h_1, h_1, h_0, h_0, h_0, ...\}$ Source **Different cardinality** Target and distribution of elements in multisets

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

In Practice …

- Graph structure describes as the edge connection probability
	- \blacksquare a $k \times k$ edge connection probability matrix **B** with k classes
	- For a class-i node, nB_{ij} many class-j attributes for $j \in [k]$ in the multiset
- **GNN pooling layer in aggregating information in multisets**

{Transforms as edge weights from class-j nodes to } $\frac{1}{2}$ class-i nodes with B_{ij}^T/B_{ij}^S on source graph

$$
B_{ij} = \frac{|\{e_{uv} \in \mathcal{E} | y_u = i, y_v = j\}|}{|\{v \in \mathcal{V} | y_v = i\}| \times |\{v \in \mathcal{V} | y_v = j\}|}.
$$

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

In Practice …

- Estimate the edge connection probability
- GNN pooling layer in aggregating information in multisets

Transforms as edge weights from class-j nodes to class-i nodes with B_{ij}^T/B_{ij}^S on source graph

!"# \$ can be approximated with pseudo-labels

Hyperparameter: $\lambda + (1 - \lambda)B_{ij}^T/B_{ij}^S$

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

In Practice …

- Estimate the edge connection probability
- GNN pooling layer in aggregating information in multisets

Transforms as edge weights from class-j nodes to class-i nodes with B_{ij}^T/B_{ij}^S on source graph

$$
B_{ij} = \frac{|\{e_{uv} \in \mathcal{E} | y_u = i, y_v = j\}|}{|\{v \in \mathcal{V} | y_v = i\}| \times |\{v \in \mathcal{V} | y_v = j\}|} \qquad B_{ij}^T \text{ can be approximated}
$$

Hyperparameter: $\lambda + (1 - \lambda)B_{ij}^T/B_{ij}^S$

Principled solution: StruRW – Experiments

Table 2: Synthetic CSBM results. The **bold** font and the <u>underline</u> indicate the first and second best model respectively, \dagger indicates the significant improvement, where the mean-1*std of a method $>$ the mean of its corresponding backbone model.

- Performance decreases with increase in CSS (from smaller q to larger q)
- StruRW-based methods significantly outperform other baselines especially under large CSS

Principled solution: StruRW – Experiments

Table 4: HEP dataset with different PU conditions and Physical process. The **bold** font indicate the best model, \dagger indicates the significant improvement, where the mean-1^{$*$}std of a method $>$ the mean of its corresponding backbone model.

- StruRW-based methods perform better than baselines
- The smaller gap may be due to the physics task itself being:
	- § Binary classification
	- Multigraph training and testing process

Content

- Problems: Various distribution shifts in scientific applications
- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

Principled solution: Future Works

• **Scientific Application:**

- Extend the Pileup Mitigation project to real data setting
- Currently try with some DA techniques to boost pileup mitigation performance
- Seek for more applications that exist distribution shifts
- **ML on distribution shift**
	- Elaborate on the StruRW project with more general assumptions
	- An OOD benchmark project on various scientific applications (HEP, biology, material science)

Conclusion

- Distribution shifts are critical problems in scientific domain
- We have proposed series of work to handle distribution shifts
	- Masking in Pileup Mitigation project
	- § More principled StruRW algorithm
- If are interested in our work

StruRW Code

Thank you Q & A

Thanks to NSF and A3D3 (OAC-2117997) for funding our research

Pileup Mitigation Paper

StruRW Paper

StruRW Code