

Distribution Shift Problems in Scientific Domains

Presented by Shikun Liu Georgia Institute of Technology Department of Electrical and Computer Engineering

Introduction

• PI: Pan Li

• A3D3 Trainees:

Siqi Miao

Shikun Liu

Georgia Institute of Technology Department of Electrical and Computer Engineering

Focus: Interpretable and generalizable graph machine learning for scientific applications

Content

- Problems: Various distribution shifts in scientific applications
- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

GNN for Science Applications

[Li et al., EPJC, 2023]

 Protein binding affinity prediction

[Karimi et al., 2019]

• Jet Tagging in HEP

[Duvenaud et al., NeurIPS 2015]

• Molecular Property Prediction

Fragments most activated by pro-solubility feature

Fragments most activated by anti-solubility feature

Refined based on [Qu, Li, Qian, 2022]

Distribution Shift Problems

• What is distribution shift ?

Training data and testing data distribution are different

Trained model can not generalize to the testing phase

- Exist widely in many scientific applications
 - Synthetic data training vs. real data testing
 - Data obtained varies in different conditions
 - Time period
 - Experimental settings (location, environment, noise, ...)
 - Measurement standards
 - Require task-specific generalization

• ...

Distribution Shift Problems

- Exist widely in many scientific applications
 - Synthetic data training vs. real data testing
 - Data obtained varies in different conditions
 - Require task-specific generalization

Detecting signal in HEP

Content

• Problems: Various distribution shifts in scientific applications

- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

Semi-supervised graph neural networks for pileup noise removal

Tianchun Li*, Shikun Liu*, Yongbin Feng*, Garyfallia Paspalaki, Nhan V. Tran, Miaoyuan Liu, Pan Li

Li, T., Liu, S., Feng, Y. *et al.* Semi-supervised graph neural networks for pileup noise removal. *Eur. Phys. J. C* 83, 99 (2023). https://doi.org/10.1140/epjc/s10052-022-11083-5

- Leading Vertex (LV): Signal of interest from primary interactions
- Pileup (PU): Additional proton-proton interactions in the same or nearby bunch crossings
- Task: Identify whether a particle is from the LV or PU
- Challenge: Easy to retrieve labels for Charged particles; No truth information for Neutral particles

How we handle this challenge?

A: Let the model <u>train on Charged</u> <u>particles</u> with given labels, then <u>infer on Neutral particles</u>

Distribution Shift Occurs

• Intuition: Make training charged particles look like testing neutral particles

- Approach: Masking strategy
- Assume the shared features have similar distribution
 Mask the unshared features

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

How we handle this challenge?

A: Let the model <u>train on Charged</u> <u>particles</u> with given labels, then <u>infer on Neutral particles</u>

Distribution Shift Occurs

• Intuition: Make training charged particles look like testing neutral particles

- Approach: Masking strategy
- Assume the shared features have similar distribution
 Mask the unshared features

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

How we handle this challenge?

A: Let the model <u>train on Charged</u> <u>particles</u> with given labels, then <u>infer on Neutral particles</u>

Distribution Shift Occurs

• Intuition: Make training charged particles look like testing neutral particles

- Approach: Masking strategy
- Assume the shared features have similar distribution
 Mask the unshared features

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

How we handle this challenge?

A: Let the model <u>train on Charged</u> <u>particles</u> with given labels, then <u>infer on Neutral particles</u>

Distribution Shift Occurs

• Intuition: Make training charged particles look like testing neutral particles

- Approach: Masking strategy
- ✓ Assume the shared features have similar distribution
 ✓ Mask the unshared features

(b). Randomly select charged LV/PU particles, and mask the label encoding for training

(c). Aggregate neighbors' features and update node representation with GNN

However...

- The shared features may exhibit different distributions
- There could be additional graph structure shift
- Additional generalization cases are needed
 - Shift across synthetic and real datasets
 - Shift across different pileup level
 - Shift over particles within different locations of detector

More principled and general methodology is needed

However...

- The shared features may exhibit different distributions
- There could be additional graph structure shift
- Additional generalization cases are needed
 - Shift across synthetic and real datasets
 - Shift across different pileup level
 - Shift over particles within different locations of detector

More principled and general methodology is needed

Content

- Problems: Various distribution shifts in scientific applications
- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

Structural Re-weighting Improves Graph Domain Adaptation

Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiu Qiang, Pan Li

Liu, Shikun, et al. "Structural Re-weighting Improves Graph Domain Adaptation." *International Conference on Machine Learning*. PMLR, 2023.

- Categories: Out of distribution generalization (OOD) and domain adaptation (DA)
- Difference:
 - OOD: no access to target / testing data
 - DA: have access to target / testing data
- Similar goal: Want the model to generalize well on target data
- Focus on: Unsupervised domain adaptation (have access to target feature but no label information)

- Categories: Out of distribution generalization (OOD) and domain adaptation (DA)
- Difference:
 - OOD: no access to target / testing data
 - DA: have access to target / testing data
- Similar goal: Want the model to generalize well on target data
- Focus on: Unsupervised domain adaptation (have access to target feature but no label information)

 $\left[P_{S}(X,Y)\neq P_{T}(X,Y)\right]$

$P_{S}(X,Y) \neq P_{T}(X,Y)$

- Assumption:
 - Covariate Shift: $P_S(X) \neq P_T(X)$ and $P_S(Y|X) = P_T(Y|X)$
 - Label Shift: $P_S(Y) \neq P_T(Y)$ and $P_S(X|Y) = P_T(X|Y)$
 - Conditional Shift: $P_S(X|Y) \neq P_T(X|Y)$
- Common Methodology: Invariant representation learning

 $Z = \phi(X); P_S(Z) = P_T(Z)$

$P_{S}(X,Y) \neq P_{T}(X,Y)$

- Assumption:
 - Covariate Shift: $P_S(X) \neq P_T(X)$ and $P_S(Y|X) = P_T(Y|X)$
 - Label Shift: $P_S(Y) \neq P_T(Y)$ and $P_S(X|Y) = P_T(X|Y)$
 - Conditional Shift: $P_S(X|Y) \neq P_T(X|Y)$
- Common Methodology: Invariant representation learning

 $Z = \phi(X); P_S(Z) = P_T(Z)$

Principled solution: StruRW – Problem

$$Z = \phi(X); P_S(Z) = P_T(Z)$$

- When extending this idea to graph structured data (GDA) ...
- Assumption: $P_S(Y) = P_T(Y)$

$$Z = \phi(A, X); P_S(Z) = P_T(Z)$$

A: Adjacency matrix; X: Node features

Suboptimality of invariant representation learning in GDA

Principled solution: StruRW – Problem

$$Z = \phi(X); P_S(Z) = P_T(Z)$$

- When extending this idea to graph structured data (GDA) ...
- Assumption: $P_S(Y) = P_T(Y)$

$$Z = \phi(A, X); P_S(Z) = P_T(Z)$$

A: Adjacency matrix; X: Node features

Suboptimality of invariant representation learning in GDA

_____.

Principled solution: StruRW – Problem

Graph Neural Network (GNN)

$$\begin{aligned} h_{v}^{(t+1)} &= f_{update}\left(h_{v}^{(t)}, f_{agg}\left(\left\{h_{u}^{(t)} \mid u \in N_{v}\right\}\right)\right) \\ h_{G} &= \operatorname{POOL}\left(\left\{h_{v}^{(L)} \mid v \in V\right\}\right) \end{aligned}$$

Sum or

mean or

max

Consider the one layer Message Passing as aggregating neighborhood representations to form a multiset

Source $\{h_0, h_1, h_0, h_1, h_1, ...\}$ $\{h_0, h_1, h_1, h_1, h_1, ...\}$: Different cardinality and distribution of elements in multisets

Target $\{h_0, h_0, h_0, h_0, h_1, ...\}$ $\{h_1, h_1, h_0, h_0, h_0, ...\}$:

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

Consider the one layer Message Passing as aggregating neighborhood representations to form a multiset

Source $\{h_0, h_1, h_0, h_1, h_1, ...\}$ $\{h_0, h_1, h_1, h_1, h_1, ...\}$ \vdots Different cardinality and distribution of elements in multisets Target { $h_0, h_0, h_0, h_0, h_1, ...$ } { $h_1, h_1, h_0, h_0, h_0, ...$ }

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

Consider the one layer Message Passing as aggregating neighborhood representations to form a multiset

Source $\{h_0, h_1, h_0, h_1, h_1, ...\}$ $\{h_0, h_1, h_1, h_1, h_1, ...\}$ \vdots Different cardinality and distribution of elements in multisets Target { $h_0, h_0, h_0, h_0, h_1, ...$ } { $h_1, h_1, h_0, h_0, h_0, ...$ }

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

In Practice ...

- Graph structure describes as the edge connection probability
 - a k×k edge connection probability matrix B with k classes
 - For a class-i node, nB_{ij} many class-j attributes for $j \in [k]$ in the multiset
- GNN pooling layer in aggregating information in multisets

Transforms as edge weights from class-j nodes to class-i nodes with B_{ij}^T/B_{ij}^S on source graph

$$B_{ij} = \frac{|\{e_{uv} \in \mathcal{E} | y_u = i, y_v = j\}|}{|\{v \in \mathcal{V} | y_v = i\}| \times |\{v \in \mathcal{V} | y_v = j\}|}.$$

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

In Practice ...

- Estimate the edge connection probability
- GNN pooling layer in aggregating information in multisets

Transforms as edge weights from class-j nodes to class-i nodes with B_{ij}^T/B_{ij}^S on source graph

$$B_{ij} = \frac{|\{e_{uv} \in \mathcal{E} | y_u = i, y_v = j\}|}{|\{v \in \mathcal{V} | y_v = i\}| \times |\{v \in \mathcal{V} | y_v = j\}|}.$$

$$B_{ij}^T \text{ can be approximated with pseudo-labels}$$

Hyperparameter: $\lambda + (1 - \lambda)B_{ij}^T/B_{ij}^S$

Goal: Downsample / resample the elements in multiset to let the source multiset distribution approximate target multiset distribution

In Practice ...

- Estimate the edge connection probability
- GNN pooling layer in aggregating information in multisets

Transforms as edge weights from class-j nodes to class-i nodes with B_{ij}^T/B_{ij}^S on source graph

$$B_{ij} = \frac{|\{e_{uv} \in \mathcal{E} | y_u = i, y_v = j\}|}{|\{v \in \mathcal{V} | y_v = i\}| \times |\{v \in \mathcal{V} | y_v = j\}|}.$$

$$B_{ij}^T \text{ can be approximated with pseudo-labels}$$

Hyperparameter: $\lambda + (1 - \lambda)B_{ij}^T/B_{ij}^S$

Principled solution: StruRW – Experiments

	q = 0.016	q = 0.014	q = 0.012	q = 0.01	q = 0.006	q = 0.001
ERM	36.52 ± 3.76	41.62 ± 5.92	48.66 ± 6.31	57.29 ± 5.28	89.72 ± 2.62	100 ± 0
DANN	64.25 ± 5.69	72.56 ± 8.54	79.63 ± 6.84	86.29 ± 8.14	96.88 ± 1.35	100 ± 0
CDAN	67.53 ± 4.98	75.38 ± 7.46	82.51 ± 6.95	89.73 ± 7.44	97.03 ± 1.09	100 ± 0
UDAGCN	51.98 ± 1.31	57.83 ± 3.05	59.74 ± 1.52	65.97 ± 1.66	98.25 ± 0.52	100 ± 0
EERM	57.36 ± 4.52	65.88 ± 3.09	70.12 ± 10.26	72.87 ± 13.70	95.01 ± 3.88	100 ± 0
MIXUP	62.54 ± 2.77	69.21 ± 2.03	74.92 ± 1.56	82.87 ± 3.45	96.89 ± 0.38	100 ± 0
STRURW-ERM	$85.24^\dagger \pm 1.63$	$87.92^\dagger \pm 1.77$	$90.26^\dagger \pm 1.05$	$93.84^\dagger \pm 0.98$	$98.28^\dagger \pm 0.14$	100 ± 0
StruRW-Adv	$86.37^\dagger \pm 3.92$	$89.22^\dagger \pm 1.83$	$91.53^\dagger \pm 2.41$	$94.08^\dagger\pm0.98$	$98.40^\dagger \pm 0.34$	100 ± 0
STRURW-MIX	$\overline{88.48}^\dagger \pm 1.93$	$\overline{89.76}^\dagger \pm 1.15$	$\overline{92.08}^{\dagger} \pm 1.13$	$\mathbf{\overline{94.26}^{\dagger}} \pm 0.99$	$\underline{98.35}^\dagger \pm 0.23$	100 ± 0

Table 2: Synthetic CSBM results. The **bold** font and the <u>underline</u> indicate the first and second best model respectively, \dagger indicates the significant improvement, where the mean-1*std of a method > the mean of its corresponding backbone model.

- Performance decreases with increase in CSS (from smaller q to larger q)
- StruRW-based methods significantly outperform other baselines especially under large CSS

Principled solution: StruRW – Experiments

Table 4: HEP dataset with different PU conditions and Physical process. The **bold** font indicate the best model, \dagger indicates the significant improvement, where the mean-1*std of a method > the mean of its corresponding backbone model.

D	DU 00 10	PU CONDITIONS			PHYSICAL PROCESSES	
DOMAINS	$PU30 \rightarrow 10$	$PU10 \rightarrow 30$	$PU140 \rightarrow 50$	$PU50 \rightarrow 140$	$gg \to Z(\nu\nu)$	$Z(\nu\nu) o gg$
ERM	69.83 ± 0.43	70.73 ± 0.46	68.70 ± 0.56	68.28 ± 0.65	63.09 ± 0.48	66.53 ± 1.04
DANN	70.14 ± 0.52	71.29 ± 0.58	69.01 ± 0.42	68.98 ± 0.63	63.15 ± 0.66	66.24 ± 0.97
StruRW-ERM StruRW-Adv	$71.35^{\dagger}\pm 0.76\ {f 70.77}^{\dagger}\pm 0.52$	$71.95^\dagger\pm0.24$ 71.96 ± 0.73	$69.43^{\dagger}\pm 0.65 \\ 69.88^{\dagger}\pm 0.71$	$\begin{array}{c} 69.05\pm0.36\\ \textbf{70.54}\pm0.84\end{array}$	$63.55 \pm 0.40 \ \mathbf{64.36^{\dagger} \pm 0.58}$	$egin{array}{c} {f 67.73 \pm 0.93} \ {f 66.91 \pm 0.67} \end{array}$

- StruRW-based methods perform better than baselines
- The smaller gap may be due to the physics task itself being:
 - Binary classification
 - Multigraph training and testing process

Content

- Problems: Various distribution shifts in scientific applications
- A detailed example: Pileup Mitigation
- A principled solution: StruRW algorithm
- Future Works

Principled solution: Future Works

• Scientific Application:

- Extend the Pileup Mitigation project to real data setting
- Currently try with some DA techniques to boost pileup mitigation performance
- Seek for more applications that exist distribution shifts
- ML on distribution shift
 - Elaborate on the StruRW project with more general assumptions
 - An OOD benchmark project on various scientific applications (HEP, biology, material science)

Conclusion

- Distribution shifts are critical problems in scientific domain
- We have proposed series of work to handle distribution shifts
 - Masking in Pileup Mitigation project
 - More principled StruRW algorithm
- If are interested in our work

StruRW Paper

StruRW Code

Thank you Q & A

Thanks to NSF and A3D3 (OAC-2117997) for funding our research

Pileup Mitigation Paper

StruRW Paper

StruRW Code