
https://mcunet.mit.eduAcknowledgment to NSF Grant OAC-2117997

On-Device Training
Under 256KB Memory

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

MCUNet for TinyML Inference
Addressing memory bottleneck issues

2
MCUNet: Tiny Deep Learning on IoT Devices (Lin et al., 2020)

Cloud AI Mobile AI Tiny AI

Memory (Activation) 32GB 4GB 320kB

Toy applications

MCUNet

Real-life applications

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Can We Learn on the Edge?
AI systems need to continually adapt to new data collected from the sensors
Not only inference, but also training

● On-device learning: better privacy, lower cost, customization, life-long learning

● Training is more expensive than inference, hard to fit edge hardware (limited memory)

3

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

https://mcunet.mit.edu

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Training Memory is the Key Bottleneck

4

0

125

250

375

500
452

20

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 8

MCU: 256KB SRAM

Raspberry Pi 1 DRAM
256MB

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

• Edge devices have tight memory constraints. The training memory footprint of neural networks
can easily exceed the limit.

https://tinytraining.mit.edu

A3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

On-Device Training Under 256KB Memory

5
On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

A3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 6
On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

On-Device Training Under 256KB Memory

A3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 7

2. Quantization-aware
scaling

3. Tiny Training
Engine

1. Sparse layer/tensor
update

On-Device Training Under 256KB Memory

A3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 8

2. Quantization-aware
scaling

3. Tiny Training
Engine

1. Sparse layer/tensor
update

On-Device Training Under 256KB Memory

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
Full update

9

Updating the whole model is too expensive:

• Need to save all intermediate activation (quite large)

• Need to store the updated weights in SRAM (Flash is read-only)

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FCweights
biases

Model: ProxylessNAS-Mobile

0

80

160

240

320

400
Full Last Bias+Last

50

61

72

83

94

https://tinytraining.mit.edu

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

10

Updating the sparse tensors/layers

• Some layers are more important than others

• No need to backpropagate to the early layers

• Only need to store a subset of the activations

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

https://tinytraining.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Find Layers to Update by Contribution Analysis
Some layers are more helpful than others

11

-10%

-5%

0%

5%

10%

0 10 20 30 40 50 60 70
-4%

5%

14%

0 5 10 15 20 25 30 35 40

- Later layers are more important

- The first point-wise conv in each block contributes more

- Middle layers are more important

- Attention and first FFN layers contribute more

Layer Index

Δ
Ac

cu
ra

cy

CNN model (MobileNetV2)

Layer Index

Transformers (BERT)

• Fine-tune each layer on a downstream dataset to measure accuracy improvement

• Generalize well to other datasets

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
Our method finds better trade-of

12

Sparse update can achieve higher transfer learning accuracy using
4.5-7.5x smaller extra memory.

https://mcunet.mit.edu

A3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 13

2. Quantization-aware
scaling

3. Tiny Training
Engine

1. Sparse layer/tensor
update

On-Device Training Under 256KB Memory

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

2. Address Optimization Difficulty of Quantized Graphs
Quantized Training: lower memory and latency

14

Full-precision training (32-bit) Quantized training (2-bit)

Real quantized graphs 
(integer tensors)

More efficient, but difficult to update

https://tinytraining.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

But optimization is hard to quantization

15

Making training difficult:

• Mixed precisions: int8/int32/fp32…

• Lack BatchNorm

75.4

86.0

Performance Comparison (average on 10 datasets)

10.6%
top-1↓

To
p-

1
A

cc
ur

ac
y

(%
)

FP32
SGD

Int8
SGD

(a) Real Quantization

2. Address Optimization Difficulty of Quantized Graphs

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 16

- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real
quantized training!

-5

5

15

25

35
fp32 int8

Tensor Index

lo
g 1

0(
∥W

∥/
∥G

∥)
2. Address Optimization Difficulty of Quantized Graphs

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

-5

5

15

25

35
fp32 int8 int8+QAS

Tensor Index

lo
g 1

0(
∥W

∥/
∥G

∥)

QAS aligns the W/G
ratio with fp32

2. QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

17

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

2. QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

18

https://mcunet.mit.edu

A3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 19

2. Quantization-aware
scaling

3. Tiny Training
Engine

1. Sparse layer/tensor
update

On-Device Training Under 256KB Memory

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 20
+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x 2300x

3. Tiny Training Engine (TTE)
Existing frameworks cannot fit
• Runtime is heavy

• Heavy dependencies and large binary size (>100MB static memory)

• Auto-diff at runtime; low edge efficiency

• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients

https://tinytraining.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

3. Tiny Training Engine (TTE)

21

Forward graph

Autodiff and run

X Pred

Feed data and execute

GraddX

 … 

g1, . . . gn = backward(L, W)
w1 = w1 − ηg1
w2 = w2 − ηg2

wn = wn − ηgn

Apply gradient step

: Runtime

: Compile-Time

Conventional training framework performs most tasks at runtime.

5

1 2

3

4

Forward graph

Backward graph

Autodiff

…

gn = backward(loss)
wn = wn − ηgn
gn−1 = backward(gn)
wn−1 = wn−1 − ηgn−1

Compute and in-place UpdateSparse update Fusion and reorder

- FWD Graph
- Optimized BWD Graph
- Gradient Step Graph

Code Generation

Tiny Training Engine (ours) separate the environment of runtime and compile time.

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

3. Tiny Training Engine (TTE)
Smaller memory usage, faster training speed

22

20x smaller memory 23x faster speed

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

3. Tiny Training Engine (TTE)
Scalable to diverse edge hardware platforms

23

La
te

nc
y

(m
s)

0.0

10.0

20.0

30.0

40.0

Dense Update Sparse Update (ours)

14.46

25.96

13.9013.90

1.4x

La
te

nc
y

(m
s)

0.0

1.5

3.0

4.5

6.0

Dense Update Sparse Update (ours)

1.19

3.55

1.61.6

Forward Backward

La
te

nc
y

(m
s)

0.0

20.0

40.0

60.0

80.0

Dense Update Sparse Update (ours)

24.40

73.98

4.44.4

1.8x 3.0x

The measured timed includes the complete forward + backward.

The benchmark model is MobilenetV2-035 with input resolution 128x128.

Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.

Qualcomm S8Gen1 CPU Jetson Nano GPU Raspberry Pi 4B+ CPU

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Coverage

24

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

Media Report

(Homepage highlight) (Homepage highlight)

https://mcunet.mit.edu

A3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 25

Open Source

Sign up here to get updates!

https://forms.gle/UW1uUmnfk1k6UJPPA

https://forms.gle/UW1uUmnfk1k6UJPPA

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Thank you!

26

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Appendix

27

https://mcunet.mit.edu

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
Updated synapses are sparse

28
Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013]

[2]

Data Source: 1, 2Do We Have Brain to Spare? [Drachman DA, Neurology 2004]
Slide Inspiration: Alila Medical Media

Time
Newborn 2-4 years old AdultAdolescence

2500 synapses
per neuron

15000 synapses
per neuron

7000 synapses
per neuron

[1]

[1]

K-12 education

Synapses are getting "sparse"

https://tinytraining.mit.edu
https://n.neurology.org/content/64/12/2004
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
Last layer update

29

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Updating only the last layer is cheap

• No need to backpropagate to previous layers

• But the accuracy is low and not ideal.

Model: ProxylessNAS-Mobile

weights
biases

Significant
accuracy

 degradation!

0

80

160

240

320

400
Full Last Bias+Last

Memory Cost (MB)
50

61

72

83

94

Cars Top1 (%)

12x
smaller

https://tinytraining.mit.edu

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
Bias-only + last layer update

30

Updating the only the bias part

• No need to store the activations

• Back propagating to the first layer.

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Model: ProxylessNAS-Mobile

dW = f(X, dY)

db = f(dY)

Still a
performance

gap

0

80

160

240

320

400
Full Last Bias+Last

Memory Cost (MB)
50

61

72

83

94

Cars Top1 (%)

https://tinytraining.mit.edu

https://tinytraining.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Update Paradigms Comparison

31

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

(a) Full update

(b) Last-only update

(c) Bias-only update

(d) Sparse layer/Sparse tensor update

https://tinytraining.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

For bias update

* Accuracy goes higher as more layers
are updated, but plateaus soon.

For weight update

* later layers are more important

* The first point-wise conv contributes more

Finding layers to update with by optimization

32

Find Layers to Update by Contribution Analysis

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Find Layers to Update by Contribution Analysis
Case study: MobileNetV2 update scheme

33

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
Full update is too expensive

34

Updating the whole model is too expensive:

• Need to save all intermediate activation (quite large)

• Need to store the updated weights in SRAM (Flash is read-only)

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
More efficient variants

35

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
More efficient variants

36

No need to save
intermediate activation:

dW = f(X, dY)

db = f(dY)

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
More efficient variants

37

Reduce weight and
activation buffer

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update
More efficient variants

38

Reduce by 4x
Activation to store: (N, M)

Weight in SRAM: (M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (N, 0.25*M)

Weight in SRAM: (0.25*M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Real quantized graphs save memory…

39

(b) Real Quantization  
(inference/on-device training)

(a) Fake Quantization  
(quantization aware training)

Intermediate tensors are still in FP32 format in fake quantization,

thus cannot save memory footprint

2. Address Optimization Difficulty of Quantized Graphs

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

Quantization overview

Scaling

Weight and gradient ratios are off by Sw

Thus, re-scale the gradients

2. QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

40

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

3. Tiny Training Engine (TTE)

41

Forward graph

Autodiff and run

X Pred

Feed data and execute

GraddX

 … 

g1, . . . gn = backward(L, W)
w1 = w1 − ηg1
w2 = w2 − ηg2

wn = wn − ηgn

Apply gradient step

: Runtime

: Compile-Time

Conventional training framework performs most tasks at runtime.

https://mcunet.mit.edu

https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

3. Tiny Training Engine (TTE)
Re-ordering reduces memory footprint

42

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.

https://mcunet.mit.edu

