

National Science Foundation

Plii

On-Device Training Under 256KB Memory

Song Han MIT Associate Professor

songhan.mit.edu tinyml.mit.edu ▼@SongHan_MIT

Wei-Chen Wang MIT Postdoctoral Associate

weichenwang.me

Acknowledgment to NSF Grant OAC-2117997

MCUNet for TinyML Inference Addressing memory bottleneck issues

Cloud Al

Memory (Activation)

32GB

Toy applications

MCUNet: Tiny Deep Learning on IoT Devices (Lin et al., 2020)

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Mobile Al

Tiny Al

320kB

4GB

Real-life applications

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 2

celerated A

Can We Learn on the Edge?

All systems need to continually adapt to new data collected from the sensors Not only inference, but also training

- On-device learning: better privacy, lower cost, customization, life-long learning
- Training is more **expensive** than inference, hard to fit edge hardware (limited memory)

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Cloud-based Learning

Acknowledgment to NSF Grant OAC-2117997

Training Memory is the Key Bottleneck

lacksquarecan easily exceed the limit.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Edge devices have tight memory constraints. The training memory footprint of neural networks

https://tinytraining.mit.edu Acknowledgment to NSF Grant OAC-2117997

Accelerated Al

On-Device Training Under 256KB Memory and State of State

devices (e.g., MCU only has 256KB SRAM).

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Training is more expensive than inference due to back-propagation, making it hard to fit IoT

On-Device Training Under 256KB Memory a

devices (e.g., MCU only has 256KB SRAM).

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Training is more expensive than inference due to back-propagation, making it hard to fit IoT

On-Device Training Under 256KB Memory 23

1. Sparse layer/tensor update

2. Quantization-aware scaling

A3D3 High-Throughput AI Methods and Infrastructure Workshop

3. Tiny Training Engine

On-Device Training Under 256KB Memory 23

1. Sparse layer/tensor update

2. Quantization-aware scaling

A3D3 High-Throughput AI Methods and Infrastructure Workshop

3. Tiny Training Engine

Acknowledgment to NSF Grant OAC-2117997

8

1. Sparse Layer/Tensor Update **Full update** biases

7x7

weights

Updating the whole model is **too expensive**:

• Need to save all intermediate activation (quite large)

5x5

 \rightarrow

• Need to store the updated weights in SRAM (Flash is read-only)

MB3 5x5

Model: ProxylessNAS-Mobile

Acknowledgment to NSF Grant OAC-2117997 https://tinytraining.mit.edu

Accelerated A

1. Sparse Layer/Tensor Update Sparse Layer/Tensor Update

Updating the sparse tensors/layers

- Some layers are more important than others
- No need to backpropagate to the early layers
- Only need to store a subset of the activations

Model: ProxylessNAS-Mobile

an others arly layers

Acknowledgment to NSF Grant OAC-2117997 https://tinytraining.mit.edu

Accelerated Al Algorithms for Data-Driven Discovery

10

Some layers are more helpful than others

- Fine-tune each layer on a downstream dataset to measure accuracy improvement
- Generalize well to other datasets

- Later layers are more important
- The first point-wise conv in each block contributes more

A3D3 High-Throughput AI Methods and Infrastructure Workshop

- Attention and first FFN layers contribute more

Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update

Our method finds better trade-off

Sparse update can achieve higher transfer learning accuracy using 4.5-7.5x smaller extra memory.

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 12

Accelerated Al

On-Device Training Under 256KB Memory 23

1. Sparse layer/tensor update

A3D3 High-Throughput AI Methods and Infrastructure Workshop

3. Tiny Training Engine

2. Address Optimization Difficulty of Quantized Graphs 33 **Quantized Training: lower memory and latency**

Full-precision training (32-bit)

2.09	<i>-0.9</i> 8	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Quantized training (2-bit)

1	-2	0	-1
-1	-1	-2	1
-2	1	-1	-2
1	-1	0	0

More efficient, but **difficult** to update

Acknowledgment to NSF Grant OAC-2117997 https://tinytraining.mit.edu

2. Address Optimization Difficulty of Quantized Graphs 33 But optimization is hard to quantization

A3D3 High-Throughput AI Methods and Infrastructure Workshop

- Making training difficult:
- Mixed precisions: int8/int32/fp32...
- Lack BatchNorm

Performance Comparison (average on 10 datasets)

Acknowledgment to NSF Grant OAC-2117997

- Why is the training convergence worse? - The scale of weight and gradients does not match in *real* quantized training!

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Tensor Index

Acknowledgment to NSF Grant OAC-2117997

2. QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

$$\tilde{\mathbf{G}}_{\bar{\mathbf{W}}} = \mathbf{G}_{\bar{\mathbf{W}}} \cdot s_{\mathbf{W}}^{-2}, \quad \tilde{\mathbf{G}}_{\bar{\mathbf{b}}} = \mathbf{G}_{\bar{\mathbf{b}}} \cdot s_{\mathbf{W}}^{-2} \cdot s_{\mathbf{x}}^{-2} = \mathbf{G}_{\bar{\mathbf{b}}} \cdot s^{-2}$$

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Tensor Index

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 17

ccelerated A

2. QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

Performance Comparison (average on 10 datasets)

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 18

ccelerated Al aorithms fo

On-Device Training Under 256KB Memory 23

1. Sparse layer/tensor update

2. Quantization-aware scaling

A3D3 High-Throughput AI Methods and Infrastructure Workshop

3. Tiny Training Engine

3. Tiny Training Engine (TTE)

Existing frameworks cannot fit

- **Runtime** is heavy \bullet
 - Heavy dependencies and large binary size (>100MB static memory)
 - Auto-diff at runtime; low edge efficiency
- **Memory** is heavy \bullet
 - A lot of intermediate (and unused) buffers
 - Has to compute full gradients

20

3. Tiny Training Engine (TTE)

Tiny Training Engine (ours) **separate** the environment of runtime and compile time.

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Conventional training framework performs most tasks at runtime.

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 21

3. Tiny Training Engine (TTE) Smaller memory usage, faster training speed

20x smaller memory

A3D3 High-Throughput AI Methods and Infrastructure Workshop

(c) Training latency *vs.* models

23x faster speed

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 22

Accelerated AI

3. Tiny Training Engine (TTE) Scalable to diverse edge hardware platforms

Forward

The measured timed includes the complete forward + backward.

The benchmark model is MobilenetV2-035 with input resolution 128x128.

Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 23

Dense Update Sparse Update (ours) Jetson Nano GPU

Backward

Dense Update Sparse Update (ours) Raspberry Pi 4B+ CPU

80.0

.

3.0x

celerated Al

Coverage **Media Report**

MIT News

SUBSCRIBE SEARCH NEWS

System brings deep learning to "internet of things" devices

Advance could enable artificial intelligence on household appliances while enhancing data security and energy efficiency.

Watch Video

Daniel Ackerman | MIT News Office November 13, 2020

✓ PRESS INQUIRIES

MIT researchers have developed a system, called MCUNet, that brings machine learning to microcontrollers. The advance could enhance the function and security of devices connected to the Internet of Things

MIT News ON CAMPUS AND AROUND THE WOR

(Homepage highlight)

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021] On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

A3D3 High-Throughput AI Methods and Infrastructure Workshop

MIT News

Learning on the edge

A new technique enables AI models to continually learn from new data on intelligent edge devices like smartphones and sensors, reducing energy costs and privacy risks.

Adam Zewe | MIT News Office October 4, 2022

✓ SEARCH NEWS ✓ PRESS INQUIRIES A machine-learning model on an intelligent edge device allows it to adapt to new data and make better predictions. For instance, training a model on a smart keyboard could enable the keyboard to continually learn from the user's writing. Image: Digital collage by Jose-Luis Olivares, MIT, using stock images and images derived from MidJournev Al. < >

(Homepage highlight)

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 24

https://forms.gle/UW1uUmnfk1k6UJPPA

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Search Q Notific		Open Search	Sou	Irce
		Q Notifi		
han-lab / <mark>tiny-trai</mark>	ning Public	🛠 Edit Pins 👻	⊙ Unwatch 8 👻	ि ४ Fork 0 → 🏠 Star
e 💽 Issues 1	2 Pull requests 🕑 Actions	🗄 Projects 🖽 Wik	i 민 Security	🗠 Insights 🔯 Settings
in 🚽 ያያ 1 branch በ	⊙ 0 tags Go	to file Add file -	<> Code -	About
ken17 Merge branch 'm	ain' of https://github.com/mit-han	. f8dfb50 yesterday	🕑 4 commits	On-Device Training Under 256 Memory [NeurIPS'22]
gorithm	prepare open source		2 days ago	♂ tinytraining.mit.edu
ompilation	prepare open source		2 days ago	edge-ai on-device-training
gures	refine qas_accuracy figure		yesterday	learning-on-the-edge
itignore	prepare open source		2 days ago	Readme
itmodules	prepare open source		2 days ago	제 MIT license
CENSE	prepare open source		2 days ago	 8 watching
EADME.md	minor update		yesterday	양 0 forks
sets	prepare open source		2 days ago	
onfigs	prepare open source		2 days ago	Releases
EADME.md			P	No releases published Create a new release

On-Device Training Under 256KB Memory

Packages

No packages published

Thank you!

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 26

Accelerated Al Algorithms for Data-Driven scovery

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 27

Accelerated Al Algorithms for Data-Driven iscovery

1. Sparse Layer/Tensor Update

Updated synapses are sparse

A3D3 High-Throughput AI Methods and Infrastructure Workshop

ccelerated Al

1. Sparse Layer/Tensor Update Last layer update

Updating only the last layer is cheap

- No need to backpropagate to previous layers
- But the accuracy is low and not ideal.

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Model: ProxylessNAS-Mobile

Acknowledgment to NSF Grant OAC-2117997 https://tinytraining.mit.edu

ccelerated A

29

1. Sparse Layer/Tensor Update

Bias-only + last layer update

Updating the only the bias part

- No need to store the activations
- Back propagating to the first layer.

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Model: ProxylessNAS-Mobile

 $d\mathbf{W} = f(\mathbf{X}, d\mathbf{Y})$ $d\mathbf{b} = f(d\mathbf{Y})$

Acknowledgment to NSF Grant OAC-2117997 https://tinytraining.mit.edu

ccelerated AI

Update Paradigms Comparison

https://tinytraining.mit.edu Acknowledgment to NSF Grant OAC-2117997

Find Layers to Update by Contribution Analysis 3-3 Finding layers to update with by optimization

(a) Investigate the contribution of last k biases $\Delta \operatorname{acc}_{b_{[k]}}$

For bias update

* Accuracy goes higher as more layers are updated, but plateaus soon.

$$k^*, \mathbf{i}^*, \mathbf{r}^* = \max_{k, \mathbf{i}, \mathbf{r}} (\Delta \operatorname{acc}_{\mathbf{b}[:k]} + \sum_{i \in \mathbf{i}, r \in \mathbf{r}} \Delta$$

A3D3 High-Throughput AI Methods and Infrastructure Workshop

(b) Investigate the contribution of a certain weight $\Delta acc_{W_{i,r}}$

For weight update

- later layers are more important
- The first point-wise conv contributes more

 $\Delta \operatorname{acc}_{\mathbf{W}i,r})$ s.t. $\operatorname{Memory}(k, \mathbf{i}, \mathbf{r}) \leq \operatorname{constraint},$

Case study: MobileNetV2 update scheme

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update **Full update is too expensive**

Updating the whole model is **too expensive**:

- Need to save all intermediate activation (quite large)
- Need to store the updated weights in SRAM (Flash is read-only)

A3D3 High-Throughput AI Methods and Infrastructure Workshop

updated □ fixed

Acknowledgment to NSF Grant OAC-2117997

1. Sparse Layer/Tensor Update **More efficient variants**

A3D3 High-Throughput AI Methods and Infrastructure Workshop

(c) sparse layer update

(d) sparse tensor update

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 35

1. Sparse Layer/Tensor Update

More efficient variants

No need to save intermediate activation: $d\mathbf{W} = f(\mathbf{X}, d\mathbf{Y})$ $d\mathbf{b} = f(d\mathbf{Y})$

(d) sparse tensor update

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 36

1. Sparse Layer/Tensor Update **More efficient variants**

A3D3 High-Throughput AI Methods and Infrastructure Workshop

(c) sparse layer update

Reduce weight and activation buffer

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 37

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 38

Accelerated AI

Real quantized graphs save memory...

(a) Fake Quantization (quantization aware training)

Intermediate tensors are still in FP32 format in fake quantization, thus cannot save memory footprint

A3D3 High-Throughput AI Methods and Infrastructure Workshop

(inference/on-device training)

Acknowledgment to NSF Grant OAC-2117997

2. QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

Quantization overview

 $\bar{\mathbf{y}}_{\text{int8}} = \text{cast2int8}[s_{\text{fp}}]$

Scaling

$$\mathbf{W} = s_{\mathbf{W}} \cdot (\mathbf{W}/s_{\mathbf{W}}) \stackrel{\text{quantize}}{\approx} s_{\mathbf{W}} \cdot \bar{\mathbf{W}}, \quad \mathbf{G}_{\bar{\mathbf{W}}} \approx s_{\mathbf{W}} \cdot \mathbf{G}_{\mathbf{W}},$$

Weight and gradient ratios are off by $\|\bar{\mathbf{W}}\|/\|\mathbf{G}_{\bar{\mathbf{W}}}\| \approx \|\mathbf{W}/s_{\mathbf{W}}\|$

Thus, re-scale the gradients

$$\tilde{\mathbf{G}}_{\bar{\mathbf{W}}} = \mathbf{G}_{\bar{\mathbf{W}}} \cdot s_{\mathbf{W}}^{-2}, \quad \tilde{\mathbf{G}}_{\bar{\mathbf{b}}} = \mathbf{G}_{\bar{\mathbf{b}}} \cdot s_{\mathbf{W}}^{-2} \cdot s_{\mathbf{x}}^{-2} = \mathbf{G}_{\bar{\mathbf{b}}} \cdot s^{-2}$$

A3D3 High-Throughput AI Methods and Infrastructure Workshop

$$_{32}\cdot(\mathbf{ar{W}}_{\texttt{int8}}\mathbf{ar{x}}_{\texttt{int8}}+\mathbf{ar{b}}_{\texttt{int32}})],$$

Sw
$$\|/\|s_{\mathbf{W}} \cdot \mathbf{G}_{\mathbf{W}}\| = s_{\mathbf{W}}^{-2} \cdot \|\mathbf{W}\|/\|\mathbf{G}\|.$$

Acknowledgment to NSF Grant OAC-2117997

3. Tiny Training Engine (TTE)

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Conventional training framework performs most tasks at runtime.

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 41

3. Tiny Training Engine (TTE) Re-ordering reduces memory footprint

Operator life-cycle analysis shows memory footprint can be greatly reduced by operator re-ordering.

A3D3 High-Throughput AI Methods and Infrastructure Workshop

Acknowledgment to NSF Grant OAC-2117997

https://mcunet.mit.edu 42

celerated Al

