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MCUNet for TinyML Inference
Addressing memory bottleneck issues

2
MCUNet: Tiny Deep Learning on IoT Devices (Lin et al., 2020)

Cloud AI Mobile AI Tiny AI

Memory (Activation) 32GB 4GB 320kB

Toy applications

MCUNet

Real-life applications
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Can We Learn on the Edge?
AI systems need to continually adapt to new data collected from the sensors 
Not only inference, but also training

● On-device learning: better privacy, lower cost, customization, life-long learning

● Training is more expensive than inference, hard to fit edge hardware (limited memory)

3

User Intelligent Edge Devices

New and Sensitive

Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

https://mcunet.mit.edu
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Training Memory is the Key Bottleneck
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MCU: 256KB SRAM

Raspberry Pi 1 DRAM 
256MB

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

• Edge devices have tight memory constraints. The training memory footprint of neural networks 
can easily exceed the limit. 

https://tinytraining.mit.edu
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On-Device Training Under 256KB Memory

5
On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT 
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB
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41.5 MB
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TensorFlow (cloud)
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+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint
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• Training is more expensive than inference due to back-propagation, making it hard to fit IoT 
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB
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355 KB

7.3x

2.0x

8.8x

2.4x

2300x

On-Device Training Under 256KB Memory
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2. Quantization-aware 
scaling

3. Tiny Training 
Engine

1. Sparse layer/tensor 
update

On-Device Training Under 256KB Memory
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2. Quantization-aware 
scaling

3. Tiny Training 
Engine

1. Sparse layer/tensor 
update

On-Device Training Under 256KB Memory
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1. Sparse Layer/Tensor Update
Full update

9

Updating the whole model is too expensive:

• Need to save all intermediate activation (quite large)

• Need to store the updated weights in SRAM (Flash is read-only)
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1. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

10

Updating the sparse tensors/layers

• Some layers are more important than others

• No need to backpropagate to the early layers

• Only need to store a subset of the activations
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Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile
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Find Layers to Update by Contribution Analysis
Some layers are more helpful than others

11
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- Later layers are more important

- The first point-wise conv in each block contributes more

- Middle layers are more important 

- Attention and first FFN layers contribute more

Layer Index

Δ 
Ac

cu
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cy

CNN model (MobileNetV2)

Layer Index

Transformers (BERT)

• Fine-tune each layer on a downstream dataset to measure accuracy improvement

• Generalize well to other datasets

https://mcunet.mit.edu
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1. Sparse Layer/Tensor Update
Our method finds better trade-of

12

Sparse update can achieve higher transfer learning accuracy using 
4.5-7.5x smaller extra memory. 

https://mcunet.mit.edu
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2. Quantization-aware 
scaling

3. Tiny Training 
Engine

1. Sparse layer/tensor 
update

On-Device Training Under 256KB Memory
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2. Address Optimization Difficulty of Quantized Graphs
Quantized Training: lower memory and latency

14

Full-precision training (32-bit) Quantized training (2-bit)

Real quantized graphs 
(integer tensors)

More efficient, but difficult to update

https://tinytraining.mit.edu
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But optimization is hard to quantization

15

Making training difficult:

• Mixed precisions: int8/int32/fp32…

• Lack BatchNorm
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2. Address Optimization Difficulty of Quantized Graphs
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- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real 
quantized training!
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2. Address Optimization Difficulty of Quantized Graphs
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QAS aligns the W/G 
ratio with fp32

2. QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

17
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2. QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

18
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2. Quantization-aware 
scaling

3. Tiny Training 
Engine

1. Sparse layer/tensor 
update

On-Device Training Under 256KB Memory
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+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x 2300x

3. Tiny Training Engine (TTE)
Existing frameworks cannot fit
• Runtime is heavy


• Heavy dependencies and large binary size (>100MB static memory)

• Auto-diff at runtime; low edge efficiency


• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

21

Forward graph

Autodiff and run

X Pred

Feed data and execute

GraddX








 … 

g1, . . . gn = backward(L, W )
w1 = w1 − ηg1
w2 = w2 − ηg2

wn = wn − ηgn

Apply gradient step

: Runtime

: Compile-Time

Conventional training framework performs most tasks at runtime. 

5

1 2

3

4

Forward graph

Backward graph

Autodiff










…

gn = backward(loss)
wn = wn − ηgn
gn−1 = backward(gn)
wn−1 = wn−1 − ηgn−1

Compute and in-place UpdateSparse update Fusion and reorder

- FWD Graph
- Optimized BWD Graph
- Gradient Step Graph

Code Generation

Tiny Training Engine (ours) separate the environment of runtime and compile time.

https://mcunet.mit.edu


https://mcunet.mit.eduA3D3 High-Throughput AI Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997

3. Tiny Training Engine (TTE)
Smaller memory usage, faster training speed

22

20x smaller memory 23x faster speed

https://mcunet.mit.edu
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3. Tiny Training Engine (TTE)
Scalable to diverse edge hardware platforms

23
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The measured timed includes the complete forward + backward.


The benchmark model is MobilenetV2-035 with input resolution 128x128.


Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.

Qualcomm S8Gen1 CPU Jetson Nano GPU Raspberry Pi 4B+ CPU

https://mcunet.mit.edu
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Coverage

24

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

Media Report

(Homepage highlight) (Homepage highlight)

https://mcunet.mit.edu
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Open Source

Sign up here to get updates!

https://forms.gle/UW1uUmnfk1k6UJPPA

https://forms.gle/UW1uUmnfk1k6UJPPA
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Thank you!

26
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Appendix
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1. Sparse Layer/Tensor Update
Updated synapses are sparse

28
Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013]

[2]

Data Source: 1, 2Do We Have Brain to Spare? [Drachman DA, Neurology 2004]
Slide Inspiration: Alila Medical Media

Time
Newborn 2-4 years old AdultAdolescence

2500 synapses 
per neuron

15000 synapses 
per neuron

7000 synapses 
per neuron

[1]

[1]

K-12 education

Synapses are getting "sparse"

https://tinytraining.mit.edu
https://n.neurology.org/content/64/12/2004
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
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1. Sparse Layer/Tensor Update
Last layer update

29
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Updating only the last layer is cheap

• No need to backpropagate to previous layers

• But the accuracy is low and not ideal.

Model: ProxylessNAS-Mobile

weights
biases

Significant 
accuracy

 degradation!
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12x 
smaller
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1. Sparse Layer/Tensor Update
Bias-only + last layer update

30

Updating the only the bias part

• No need to store the activations

• Back propagating to the first layer.
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Model: ProxylessNAS-Mobile

dW = f(X, dY)

db = f(dY)

Still a 
performance 
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Update Paradigms Comparison
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(a) Full update

(b) Last-only update

(c) Bias-only update

(d) Sparse layer/Sparse tensor update
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For bias update

* Accuracy goes higher as more layers 
are updated, but plateaus soon.

For weight update

* later layers are more important

* The first point-wise conv contributes more

Finding layers to update with by optimization

32

Find Layers to Update by Contribution Analysis

https://mcunet.mit.edu
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Find Layers to Update by Contribution Analysis
Case study: MobileNetV2 update scheme

33
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1. Sparse Layer/Tensor Update
Full update is too expensive

34

Updating the whole model is too expensive:

• Need to save all intermediate activation (quite large)

• Need to store the updated weights in SRAM (Flash is read-only)

https://mcunet.mit.edu
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1. Sparse Layer/Tensor Update
More efficient variants

35
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1. Sparse Layer/Tensor Update
More efficient variants

36

No need to save 
intermediate activation:

dW = f(X, dY)

db = f(dY)

https://mcunet.mit.edu
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1. Sparse Layer/Tensor Update
More efficient variants

37

Reduce weight and 
activation buffer

https://mcunet.mit.edu
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1. Sparse Layer/Tensor Update
More efficient variants

38

Reduce by 4x
Activation to store: (N, M)

Weight in SRAM: (M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (N, 0.25*M)

Weight in SRAM: (0.25*M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

https://mcunet.mit.edu
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Real quantized graphs save memory…
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(b) Real Quantization  
(inference/on-device training)

(a) Fake Quantization  
(quantization aware training)

Intermediate tensors are still in FP32 format in fake quantization, 

thus cannot save memory footprint

2. Address Optimization Difficulty of Quantized Graphs
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Quantization overview

Scaling

Weight and gradient ratios are off  by Sw

Thus, re-scale the gradients

2. QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

40
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3. Tiny Training Engine (TTE)

41

Forward graph

Autodiff and run

X Pred

Feed data and execute

GraddX








 … 

g1, . . . gn = backward(L, W )
w1 = w1 − ηg1
w2 = w2 − ηg2

wn = wn − ηgn

Apply gradient step

: Runtime

: Compile-Time

Conventional training framework performs most tasks at runtime. 
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3. Tiny Training Engine (TTE)
Re-ordering reduces memory footprint

42

Operator life-cycle analysis shows memory footprint 
can be greatly reduced by operator re-ordering.
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