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| MCUNet for TinyML Inference

Addressing memory bottleneck issues
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MCUNet: Tiny Deep Learning on loT Devices (Lin et al., 2020)
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] Can We Learn on the Edge? Sias

Al systems need to continually adapt to new data collected from the sensors
Not only inference, but also training

- On-device learning: better privacy, lower cost, customization, life-long learning

- Training Is more expensive than inference, hard to fit edge hardware (limited memory)

Cloud-based Learning

On-device Learning
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New and Sensitive
Data

K
data cannot be sent to the
cloud for privacy reason

User Intelligent Edge Devices Cloud Server
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| Training Memory is the Key Bottleneck &35+

» Edge devices have tight memory constraints. The training memory footprint of neural networks
can easily exceed the limit.

500
)
=
— 375
= "
§ é’ Y Raspberry Pi 1 DRAM
o &% % Raspberry Pi
O 250 e
S0 4/ 256MB
-
@)
E 125
)
=
MCU: 256KB SRAM
20
Inference Training
Batch Size =1 Batch Size =8

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| On-Device Training Under 256KB Memory &3

* Training is more expensive than inference due to back-propagation, making it hard to fit loT
devices (e.g., MCU only has 256KB SRAM).

5256KB constraint
! 652 MB

TensorFlow (cloud)
303 MB

PyTorch (cloud)

41.5 MB
MNN (edge)

On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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| On-Device Training Under 256KB Memory &3

* Training is more expensive than inference due to back-propagation, making it hard to fit loT
devices (e.g., MCU only has 256KB SRAM).

5256KB constraint

652 MB
TensorFlow (cloud)
303 MB
PyTorch (cloud) |
: 41.5 MB
MNN (edge)—
: 5.7 MB
Tiny Training Engine I <« 7.3
. | 5 2. 9MB
+ Quantization-aware scaling | < 1 2.0x
358 KB
+ Sparse layer/tensor update E———— < 8.8x
141 KB |
+ Operator reordering gl «——— 2.4x
< 2300Xx
0.1 MB 1 MB 10 MB 100 MB

On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]

A3D3 High-Throughput Al Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997



| On-Device Training Under 256KB Memory &3

SRO%S

1. Sparse layer/tensor 2. Quantization-aware 3. Tiny Training
update scaling Engine
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| On-Device Training Under 256KB Memory &3

1. Sparse layer/tensor
update
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| 1. Sparse Layer/Tensor Update 3

Full update

bIaSGSI:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:I

Model: ProxylessNAS-Mobile

Weights

Updating the whole model is too expensive:
e Need to save all intermediate activation (quite large)
e Need to store the updated weights in SRAM (Flash is read-only)

B Full Last ] Bias+Last

400 94
320 83
240
72
160
0 50
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| 1. Sparse Layer/Tensor Update aaz'

Sparse Layer/ Tensor Update Sparse tensor backpropagation
""""""" . ' 7 I:I I:I I:I I:I I\ 71 I AV B BAYE

Backpropagatlon stops here Sparse layer backpropagation
Model: ProxylessNAS-Mobile

Updating the sparse tensors/layers

e Some layers are more important than others
e No need to backpropagate to the early layers
e Only need to store a subset of the activations
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| Find Layers to Update by Contribution Analysis 333+

Some layers are more helpful than others

e Fine-tune each layer on a downstream dataset to measure accuracy improvement
e (GGeneralize well to other datasets

CNN model (MobileNetV2) Updated Frozen Transformers (BERT) Updated Frozen

14% - t 10% t .
o h / Conv2d, 1x1 \a | | / FFN %inear 2 \
) 3 5%
© : FFN Linear 1
5 N ( Depthwise Conv2d, ) N il — /
8 5% 0% RAYA | ‘ <
< ‘ AN “":' . “ Multi-Head Attn
g )/ 1) | \ Conv24d, 1x1 /G 50, ¥ N '  \ C — ) c

4% \ C Input > 10% L CEmbeddinD

0 5 10 15 20 25 30 35 40 MobileNetV?2 0 10 20 30 40 50 60 70 BERT
Layer Index Layer Index
- Later layers are more important - Middle layers are more important
- The first point-wise conv in each block contributes more - Attention and first FFN layers contribute more
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| 1. Sparse Layer/Tensor Update

Our method finds better trade-off

Average Acc (%)

update last k biases

<150kB
upper
hl gher ACE e, b ound

155 270 385
Extra Memory (KB)

(a) MCUNet-SFPS

500

Average Acc (%)

@ update last k layers

@ sparse update (ours)

72
70 AN 75><smallerup4?r
bound
68
66
64 7/
40 110 180 250 545
Extra Memory (KB)

(b) MbV2-w0.35

Average Acc (%)

75
73
71
69
67
65

upper

e

40

110 180 250
Extra Memory (KB)

(c) Proxyless-w0.3

Sparse update can achieve higher transfer learning accuracy using
4.5-7.5x smaller extra memory.

324

A3D3 High-Throughput Al Methods and Infrastructure Workshop
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| On-Device Training Under 256KB Memory &3

2. Quantization-aware
scaling
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I 2. Address Optimization Difficulty of Quantized Graphs 3%: 3=

Quantized Training: lower memory and latency

More efficient, but difficult to update

Full-precision training (32-bit) Quantized training (2-bit)

Real quantized graphs
(integer tensors)
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I 2. Address Optimization Difficulty of Quantized Graphs 5\%: 3=

But optimization is hard to quantization

Making training difficult:
* Mixed precisions: int8/int32/fp32...
* Lack BatchNorm

Performance Comparison (average on 10 datasets)

L . 10.6%

> \t?p-u

Q :

o a

(a) Real Quantization § s

<

&

= .
FP32 Int8
SGD SGD
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I 2. Address Optimization Difficulty of Quantized Graphs 5\%: 3=

- Why is the training convergence worse?
- The scale of weight and gradients does not match in real
quantized training!

35 _
_ — fp32 _thB |
Ezs“ — |
glsv V/\V/\/\/\/\/\/\V/\/\/\/
= |
ga‘s

-5

Tensor Index
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| 2. QAS: Quantization-Aware Scaling 33

QAS addresses the optimization difficulty of quantized graphs

N =2 AL (. a2 =2 (v =2
Gw =Gw  sw:, Gg=Gg sw  Sx =Gg-s

35
— fp32 — intnS | iNt8+QAS

o 25 || n - ﬂ
§ 15 v V /\ V /\/\/\/\ /\/\ V /\/\/\/
= | | QAS aligns the W/G
o 5 ratio with fp32 l
S i

-

Tensor Index
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| 2. QAS: Quantization-Aware Scaling 33

QAS addresses the optimization difficulty of quantized graphs

Performance Comparison (average on 10 datasets)

Improve —

converge

75.4

Top-1 Accuracy (%)

FP32 SGD Int8 SGD Int8 LARS Int8 Adam Int8 QAS
Extra memory  (ours)

(3x)

6 6
5 wn
Q w2
3 4 < 4
£ 3 ~ 3
= 2 ~ )

1 1

0 10 20 30 40 50 0 10 20 30 40 50
Training Epochs Training Epochs
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| On-Device Training Under 256KB Memory &3

SRO%S

3. Tiny Training
Engine
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| 3. Tiny Training Engine (TTE) Sias

Existing frameworks cannot fit

* Runtime is heavy
» Heavy dependencies and large binary size (>100MB static memory)
 Auto-diff at runtime; low edge efficiency
* Memory is heavy
» A lot of intermediate (and unused) buffers
» Has to compute full gradients

5256KB constraint
: 652 MB

TensorFlow (cloud) —

: 303 MB
Py Torch (€10 U Cl ) |1————

41.5 MB

MNN (edge)—
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| 3. Tiny Training Engine (TTE) A=

Feed data and execute Apply gradient step

- Compile-Time
Wy =W — N8
Wy =Wy — 18>
0

Conventional training framework performs most tasks at runtime.

orE
cor
r=x-)
RO
-

Forward graph Sparse update Fusion and reorder Compute and in-place Update

o e  {o}
i Bl EeEeE Code Generaion 0 = kel
W, =W, — 1§,

— FWD Graph g,—1 = backward(g,)
e ) — Optimized BWD Graph Wn—1= W1 = N8n-1

— Gradient Step Graph
Backward graph @

orr 3
cor |o
I e=1-)
o
-
oo

Tiny Training Engine (ours) separate the environment of runtime and compile time.
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| 3. Tiny Training Engine (TTE) Sias

Smaller memory usage, faster training speed

I full update sparse update [ TF-Lite, full (projected, OOM)
B sparse update + reorder TF-Lite, sparse M TTE, sparse
—= 4000 3650 1000 133908
2 3000 | 2939 | ;”:?12000 10523 |
~ 21x = T 25%
QE) 2000 . smaller c>)~. 9000 24x faster
= S 6000 faster 5607
5 a4 | 1L
S 1000 5 3000 |
R ) \ ) 373
MbV2 Proxyless = MCUNet MbV2 Proxyless MCUNet
(a) Peak memory vs. models (c) Traimning latency vs. models
20x smaller memory 23x faster speed
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| 3. Tiny Training Engine (TTE) Sias

Scalable to diverse edge hardware platforms

B Forward B Backward

40.0 6.0 80.0 e . —
o 30.0 o 4.5 » 60.0
S S S 3.0x
5 20.0 5 3.0 3 40.0
L 9 Q v
S 10.0 - - S 15 S 20.0 -

Dense Update Sparse Update (ours) Dense Update Sparse Update (ours) Dense Update Sparse Update (ours)

Qualcomm S8Gen1 CPU Jetson Nano GPU Raspberry Pi 4B+ CPU

Sncpdrogﬂ

.. §

The measured timed includes the complte forward + backward.

The benchmark model is MobilenetV2-035 with input resolution 128x128.

Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.
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| Coverage
Media Report

MIT News

ON CAMPUS AND AROUND THE WORLD £ SUBSCRIBE v SEARCH NEWS

System brings deep learning to
“internet of things” devices

Advance could enable artificial intelligence on
household appliances while enhancing data security
and energy efficiency.

() Watch Video

Daniel Ackerman | MIT News Office
November 13, 2020

g

7’

v PRESS INQUIRIES

MIT researchers have developed a
system, called MCUNet, that brings
machine learning to microcontrollers.
The advance could enhance the
function and security of devices
connected to the Internet of Things
(loT).
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(Homepage highlight)

MIT News

ON CAMPUS AND AROUND THE WORLD

Tiny machine learning design
alleviates a bottleneck in memory
usage on internet-of-things devices

New technique applied to small computer chips
enables efficient vision and detection algorithms
without internet connectivity.

() Watch Video

Lauren Hinkel | MIT-IBM Watson Al Lab
December 8, 2021

< SUBSCRIBE v SEARCH NEWS

v PRESS INQUIRIES

An MIT team's tinyML vision system
outperforms other models in many
image classification and detection
tasks.

Photo courtesy of the researchers.

| Accelerated Al
Algorithms for
Data-Driven

Discovery

MIT News

ON CAMPUS AND AROUND THE WORLD

X SUBSCRIBE v SEARCH NEWS

Learning on the edge

A new technique enables Al models to continually learn
from new data on intelligent edge devices like
smartphones and sensors, reducing energy costs and
privacy risks.

Adam Zewe | MIT News Office
October 4, 2022

v PRESS INQUIRIES

A machine-learning model on an
intelligent edge device allows it to adapt
to new data and make better predictions.
For instance, training a model on a smart
keyboard could enable the keyboard to
continually learn from the user’s writing.

Image: Digital collage by Jose-Luis Olivares,
MIT, using stock images and images derived
from MidJourney Al.

m— E———

(Homepage highlight)

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]

A3D3 High-Throughput Al Methods and Infrastructure Workshop
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O Product Team Enterprise Explore Marketplace Pricing

Open Source

H mit-han-lab [ mcunet  Pubiic A Notific |
<> Code (%) Issues 6 £ Pull requests
0 Product Team Enterprise Explore Marketplace Pricing Search
¥ master ~ P 2 branches © 0tags
— [ mit-han-lab [/ tinyengine ' public L\ Notifi
:— README.md
H mit-han-lab [ tiny-training ' public <z EditPins + & Unwatch 8 ~ % Fork 0 v Yy Star 65

<> Code () Issues I Pullrequests (») Actions

MCUNet: Tiny Deer

<> Code () Issues 1 §9 Pullrequests (») Actions [ Projects [J Wiki @ Security |~ Insights 3 Settings

¥ master ~ ¥ 1branch 0 tags

This is the official implementation of th o . 2 1branch G0+ o to i A fil About
=  README.md main ~ ranc ags o to file ile ode ~
T' E . @ Lyken17 Merge branch 'main' of https://github.com/mit-han... f8dfb50 yesterday YY) 4 commits Memory [NeurlPS'22]
y g 2B algorithm prepare open source 2 days ago ¢ tinytraining.mit.edu
28 compilation prepare open source 2 days ago edge-ai  on-device-training

This is the official implementation of TinyEngine, i ™
Microcontrollers. TinyEngine is a part of MCUNet, W figures refine qas_accuracy figure yesterday

learning-on-the-edge

co-design framework for tiny deep learning on mi 0 gitignore orepare open source 2 days ago 0 Readme
tight memory budgets. 58 MIT license
[ .gitmodules prepare open source 2 days ago
¢ 65 stars
The MCUNet and TinyNAS repo is here. [ LICENSE prepare open source 2 days ago ® 8 watching
[ README.md minor update yesterday % 0 forks
MCUNetV1| MCUNetV2 | MCUNetV3
B3 assets prepare open source 2 days ago
&3 configs prepare open source 2 days ago Releases
No releases published
Create a new release
= README.md V4

Sign up here to get updates!
https://forms.gle/UW1uUmnfk1k6UJPPA On-Device Training Under 256KB Memory Packages

No packages published
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| 1. Sparse Layer/Tensor Update 3

Updated synapses are sparse

15000 synapses
per neuron [1]

Q&es are getting "sparse”

¢ 3 per neuron
/ 2500 synapses K-12 education

7000 synapses

per neuron!l

> Time
Newborn 2-4 years old Adolescence Adult
Do We Have Brain to Spare? [Drachman DA, Neurology 2004] Data Source: 1, 2
Peter Huttenlocher (1931-2013) [Walsh, C. A., Nature 2013] Slide Inspiration: Alila Medical Media
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https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.

| 1. Sparse Layer/Tensor Update

Last layer update

weights 7 b E»%»:-)*» ~—> 9 _> -> ->><—>><-> -—> -—> _> h>_
ixiimiimlimiimi iRl iR/ iR iRiipiigliRiiRiipi iRt
R =R B N B R e e o = R o S = R S = R R = R R S B e )

Model: ProxylessNAS-Mobile

Updating only the last layer is cheap
e No need to backpropagate to previous layers
e But the accuracy is low and not ideal.

B Full L ast
400 — 94
320 : 83 L
540 12x + Significant
smaller 72 : accu_ rac-y
160 ; . degradation!
: 61 :
80 :
v v
0 50
Memory Cost (MB) Cars Top1 (%)
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| 1. Sparse Layer/Tensor Update
Bias-only + last layer update

Model: ProxylessNAS-Mobile

Updating the only the bias part
 No need to store the activations = 1(X, dY)
» Back propagating to the first layer. 4P =1(dY)

B Full Last . Bias+Last
Still a
performance
gap
]

Memory Cost (MB) Cars Top1 (%)

400
320
240
160

80

A3D3 High-Throughput Al Methods and Infrastructure Workshop  Acknowledgment to NSF Grant OAC-2117997  https://tinytraining.mit.edu 30


https://tinytraining.mit.edu

I TR T I TV E T N R I T I R R I T v I
T . - - 1. - T Nt snNI o senI O s - - . -

miimiigR:imMiig:imiiR:
P iSiisSiisi IS ISt IS

IV TR HIN R E G F TR IS S TCRVE I S TR SR IR ST S TGRSR I PO R FERSE TRV FORYE IRV S PO
. — N N N N N N No) N N N No) N N N No) O N N No)
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(c) Bias-only update

............. ggggggggggggggggggi
: P i@l i@l i@l igiimEiml i
IR =R IR = =N A

= ] = ] = ] = ]
gesee TS res SEEEEre  SEsErEre e Erre SEEpEree SSEpEEEe gy s wEErErErs SmEEErEs  SEEEER

(d) Sparse layer/Sparse tensor update
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Finding layers to update with by optimization

14% 14%
= 12% 1% | ® update all channels ‘
5010% I S ® update 1/2 channels /\
S oo saturates ; 8% update 1/4 channels |
Q 2 ;’ Q 50, | ® update 1/8 channels Pl A
O 0 O
2 4% g 27 "\/AA/A,A A
= S 1, - A
o 2% - -1% R\
i i
0% -4%
0 5 10 15 20 30 35 40 0 10 15 20 25 30 35 40
#layers to update bias layer index to update weight
(a) Investigate the contribution of last & biases Aaccy, ., (b) Investigate the contribution of a certain weight Aaccyy,,
For bias update For weight update
* Accuracy goes higher as more layers * later layers are more important
are updated, but plateaus soon. * The first point-wise conv contributes more

k* 1% r* = I,??‘f(Aaccb[ k] + Z Aaccw; ) s.t. Memory(k, i, r) < constraint,
T 1€E1,TETr
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| Find Layers to Update by Contribution Analysis 333+

Case study: MobileNetV2 update scheme

(a) per-layer memory usage

5 60 4— high activation memory activation B weight high weight memory —..
N’ as | L el e
g 00 L L T low memorycost ~ ga.-7
= I N - S l _________________
§ 5L T e Y.
0 ——

(b) sparse update scheme sparse layer update (low memory cost) sparse tensor update (high acc)
= 1/; \.I \.I \.I 1 \
S 1/3 1/4

[ ' b

(high activation cost) not update bias/forward only <~ update bias (low activation cost)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Layer Index
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| 1. Sparse Layer/Tensor Update S

Full update Is too expensive
Wi by Bl updated fixed

(a) full update

Updating the whole model is too expensive:
e Need to save all intermediate activation (quite large)
e Need to store the updated weights in SRAM (Flash is read-only)

A3D3 High-Throughput Al Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 https://mcunet.mit.edu 34
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| 1. Sparse Layer/Tensor Update

More efficient variants
B updated fixed

W; b Wi by _

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

A3D3 High-Throughput Al Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 https://mcunet.mit.edu 35
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| 1. Sparse Layer/Tensor Update

More efficient variants
B updated fixed

W, b Wi by

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

No need to save
intermediate activation:
dW = {(X, dY)

db = f(dY)

A3D3 High-Throughput Al Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 https://mcunet.mit.edu 36
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| 1. Sparse Layer/Tensor Update

More efficient variants
B updated fixed

W; b Wi by _

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

Reduce weight and
activation buffer

A3D3 High-Throughput Al Methods and Infrastructure Workshop Acknowledgment to NSF Grant OAC-2117997 https://mcunet.mit.edu 37


https://mcunet.mit.edu

| 1. Sparse Layer/Tensor Update

More efficient variants
B updated fixed

W; b Wi by _

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

(H, N) (N, M) (H, M) (H, M)
-1  E i
Activation to store: ( Activation to store: (N, 0.25*M)
ﬁ
Weight in SRAM: (M, H) Reduce by 4x Weight in SRAM: (0.25*M, H)
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https://mcunet.mit.edu

I 2. Address Optimization Difficulty of Quantized Graphs 5% 3=

Real quantized graphs save memory...

-----------------------------------

value range
(-6,6)

....................................

™

(@) Fake Quantization
(quantization aware training)

(b) Real Quantization
(inference/on-device training)

Intermediate tensors are still in FP32 format in fake quantization,
thus cannot save memory footprint
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| 2. QAS: Quantization-Aware Scaling B3

QAS addresses the optimization difficulty of quantized graphs

Quantization overview

Vintg = cast2int8[ssp32 - (WintsXints + binesz)],

Scaling

quantize

WZSW°(W/Sw) ~ 8W°W, GV—V%8W°Gw,

Weight and gradient ratios are off by Sw
IWI/IGwll ~ [W/swll/lsw - Gwll =|s3 {IWII/IG]|

Thus, re-scale the gradients
Gw = Gw -sw, Gg=Gg -sw 5. =Gg- 5"
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| 3. Tiny Training Engine (TTE) Sias

Feed data and execute Apply gradient step

- Compile-Time
Wy =W — N8
Wy =Wy — 18>
0

Conventional training framework performs most tasks at runtime.

-

o

cor
r=x-)
RO
-
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| 3. Tiny Training Engine (TTE) Sias

Re-ordering reduces memory footprint

Inference Training (activation) [ Training (weights) B Training (gradients) [ Trainable weights
_)
~ 384 . 384
@ Memory optimized via |
— 2881 Oneratore (i -Place gradientupdate 4 288
q ]
E
21 192 192
g ¥
5 .
> . .
0 30 60 90 120 150 180 210 240 270 O 30 60 90 120 150 180 210 240 270
Life cycle (operator index) Life cycle (operator index)
(a) Vanilla backward graph (b) Optimized backward graph

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.
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