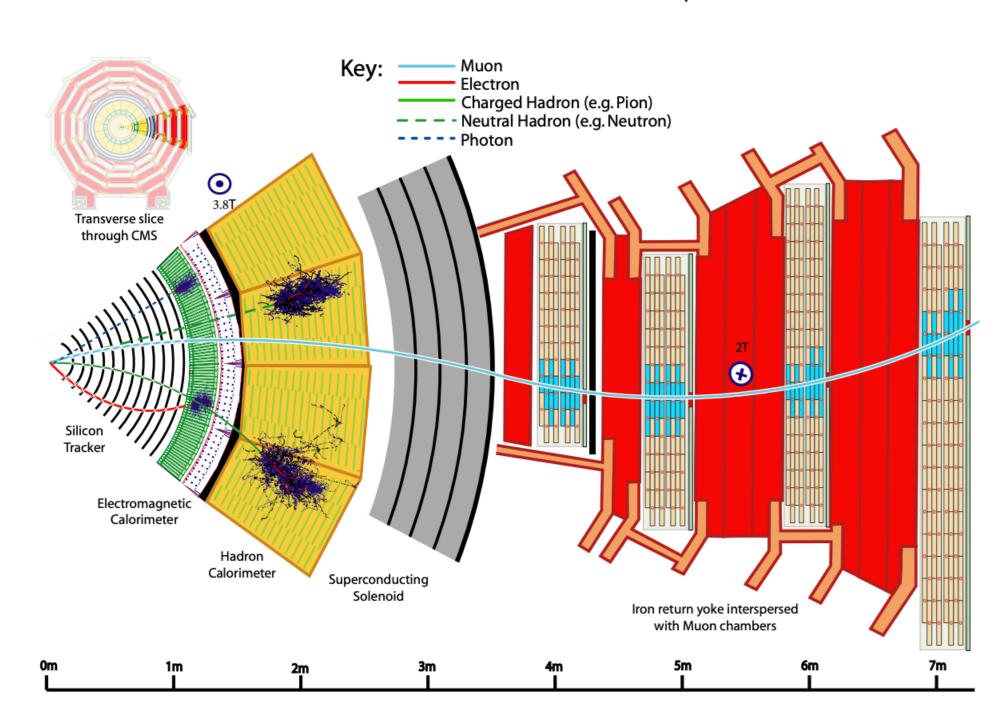


Progress towards an improved particle-flow algorithm at CMS with machine learning

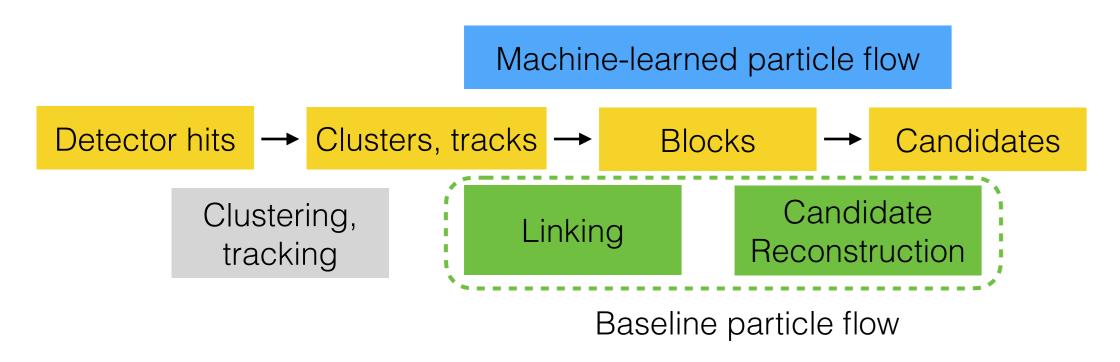
Joosep Pata¹, Farouk Mokhtar², Michael Zhang², Javier Duarte², Eric Wulff³ ¹National Institute of Chemical Physics and Biophysics, ²UC San Diego, ³CERN

PF and MLPF

 Particle-flow (PF) reconstruction is a global event reconstruction that combines information from calorimeter clusters and tracks to reconstruct stable particles.



- Machine-learned particle-flow (MLPF) algorithm is a graph neural network trained to perform particle-flow (PF) reconstruction via supervised learning.
- MLPF does the linking of tracks and clusters, after clustering/tracking has been performed. See figure below.



- Advantages of MLPF include the possibility of deployment on heterogeneous computing accelerators (e.g. GPUs) and reoptimizing the algorithm in light of new experimental conditions.
- · We can now train MLPF in CMS on a gen/sim-level target (i.e. without referencing an existing PF algorithm) and get results that are largely compatible, and in some cases better, than standard PF.

Datasets

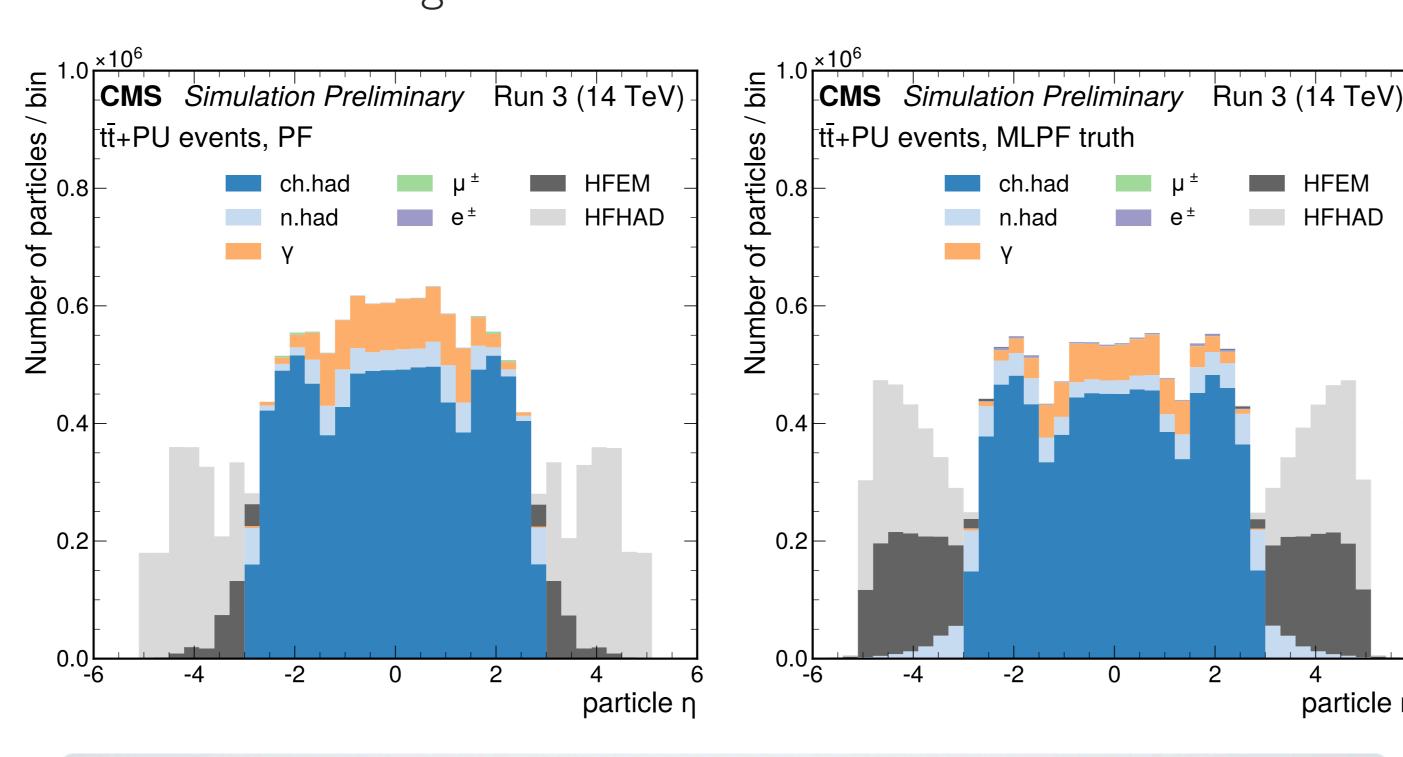
• Datasets are generated using CMSSW under Run 3 conditions.

physics process	PU configuration	MC events
top quark-antiquark pairs	flat 55–75	100 k
QCD $\hat{p_T} \in [15,3000]$ GeV	flat 55-75	100 k
QCD $\hat{p_{T}} \in [3000, 7000] \text{ GeV}$	flat 55–75	100 k
Z ightarrow au au all-hadronic	flat 55–75	100 k
single e flat $p_T \in [1, 1000]$ GeV	no PU	10 k
single μ log-flat $p_{\mathrm{T}} \in [0.1, 2000]$ GeV	no PU	10k
single π^0 flat $p_T \in [0, 1000]$ GeV	no PU	10 k
single π^{\pm} flat $p_{\mathrm{T}} \in [0.7, 1000]$ GeV	no PU	10 k
single τ flat $p_{\mathrm{T}} \in [1, 1000] \mathrm{GeV}$	no PU	10 k
single γ flat $p_{\mathrm{T}} \in [1, 1000] \mathrm{GeV}$	no PU	10 k
single p flat $p_T \in [0.7, 1000]$ GeV	no PU	10 k
single n flat $p_T \in [0.7, 1000]$ GeV	no PU	10 k

Table 1: MC simulation samples used for optimizing the MLPF model.

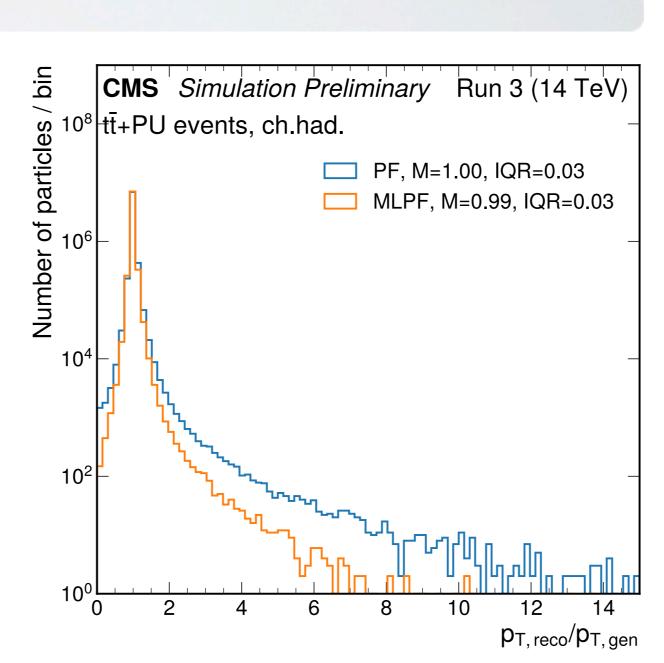
MLPF truth definition

 MLPF training truth defined based on detector simulation information to closely approximate the input the simulation receives from the generator.



Particle-level validation

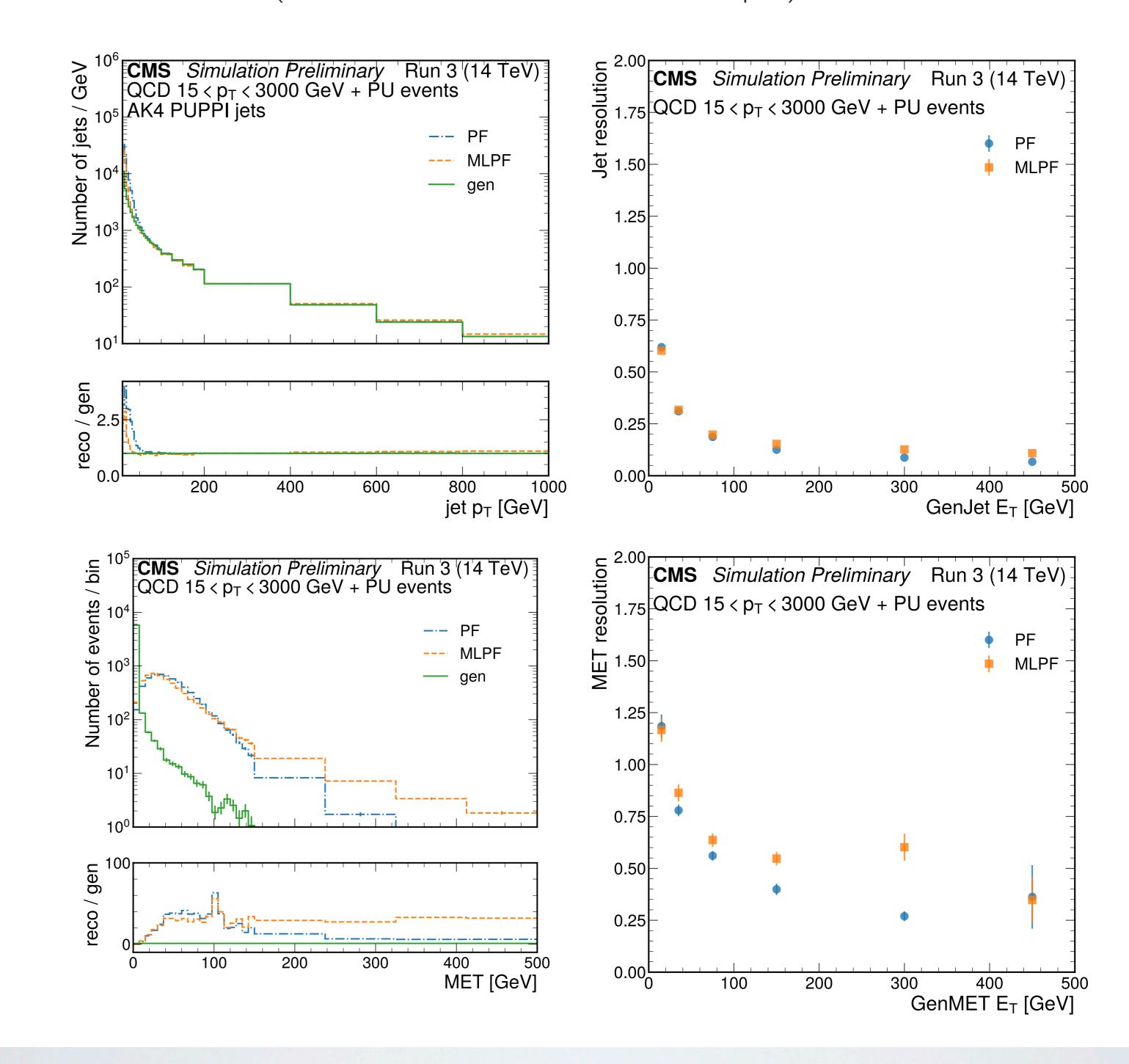
 Comparable response for charged hadron reconstruction between MLPF and PF, with slightly better efficiency/fake-rate and p_T resolution for MLPF.



particle n

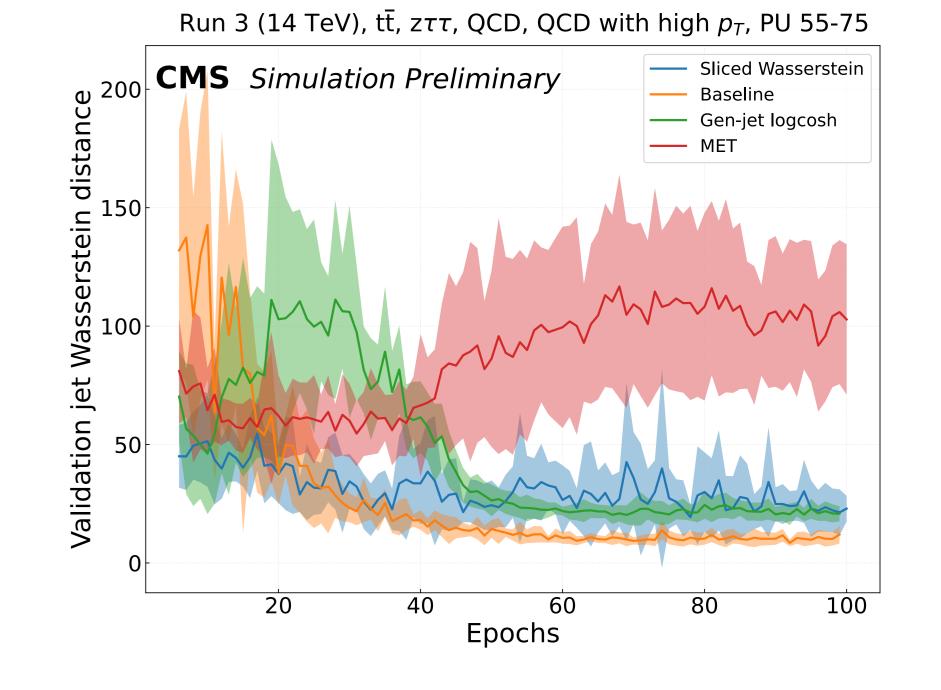
Event-level validation

- Reconstruct PUPPI jets with either PF or MLPF and compare them with gen-level jets: full distributions and response relative to gen-level.
- Comparable performance between PF and MLPF for jet and MET reconstruction (shown for the QCD+PU sample).



Event loss scans

- Compare the usefulness of additional event-level loss terms in improving the reconstruction of jets and MET.
- Baseline approach (no additional event loss term) performs best.



Acknowledgment: OAC-2117997