<sup>1</sup>Department of Applied Mathematics, University of Washington, USA <sup>2</sup>Department of Electrical and Computer Engineering, University of Washington, USA

## Motivation

- **RNN** are the backbone of **time series and sequences modeling**
- Architectural variants of RNNs only represent singular points in the space of RNN
- **RNN accuracy** depends on **hyperparameter configurations**
- Given RNN variant, predicting its accuracy before training is limited.

# Background

- A powerful dynamical system method for characterization and predictability of dynamical systems is *Lyapunov Exponents (LEs)*.
- LEs capture the information generation by a system's dynamics through measurement of the separation rate of infinitesimally close trajectories.
- However, the connection between LE and network performance has not been explored extensively.



# Lyapunov-Guided Representation of RNN Performance

# Ryan Vogt<sup>1</sup>, Yang Zheng<sup>2</sup>, Eli Shlizerman<sup>1,2</sup>



Error = 0.07

0 1 2 3 4 5 6 7 8 9

- 10-2



## NSF Award Number: 2117997

| Training | AeLLE vs. [Loss] |         |              |                    |
|----------|------------------|---------|--------------|--------------------|
| %        | Recall           |         | Precision    | F1                 |
| 0%       | 92.2%            | [-]     | 81.9% [-]    | 0.87 [-]           |
| 10%      | 96.9%            | [21.4%] | 83.6% [100%] | <b>0.90</b> [0.35] |
| 20%      | 96.7%            | [49.0%] | 82.8% [100%] | <b>0.89</b> [0.66] |
| 50%      | <b>95.3%</b>     | [70.4%] | 81.0% [99%]  | <b>0.88</b> [0.82] |
|          |                  |         |              |                    |

evaluated at different

[3] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

[4] Ryan, et al. "Lyapunov-Guided Embedding for Hyperparameter Selection in Recurrent Neural Networks." arXiv preprint arXiv:2204.04876 (2022)