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RESULTS
• Testing accuracy: CNN model demonstrated an exceptional accuracy of  

97.72% when evaluated on the testing dataset.
• Comparison with FFT: Achieved slightly less accuracy than FFT 

spectrograms which achieved 99.69% accuracy.
• Comparison with literature: Similar CNN architectures in the literature 

achieved higher accuracies, such as 99% (Fernandes et al., 2018).
• Dataset differences: Our dataset consisted of separate time series for 

gravitational wave signal data and noise data, while other works had to 
apply more complex noise filtering methods.

QUICK FACTS ABOUT OUR CNN MODEL

• > 97% testing accuracy

• Data split of 70% training, 15% validation, and 15% testing

• Dataset contains a total of 146045 simulated gravitational wave time 
series data samples

• Applied Gramian Angular Summation Field (GASF) algorithms to encode 
gravitational wave data as 2D images for classification

• Neural network contains 2 convolutional / max-pooling layers followed 
by 3 fully connected layers and an output

DATA ANALYSIS
• Model output: Probability predictions of images for background or 

signal compared to ground truth targets with Softmax function.
• Testing and accuracy: Tested trained model against a separate 

testing dataset, achieved an overall accuracy of > 97%.
• Misclassification patterns: Model tends to misclassify when detectors 

have conflicting data.
• Possible flaws: Confusion may arise from contradictory signals 

between detectors or flaws in observatory data capture.

INTRODUCTION
• Dataset source: Glitch dataset is simulated data that originates from 

the Laser Interferometer Gravitational-Wave Observatory (LIGO).
• Dataset categories: Consists of four distinct data categories - Glitch, 

Background, Sine-Gaussian (SG), and Binary Black Hole (BBH).
• Objective: Develop a binary classifier to identify signals as either 

Glitch/Background or Sine-Gaussian/Binary Black Hole using GASF 
method vs FFT Spectrogram.

Basic structure of our convolutional neural network (CNN).

METHODOLOGY
• Image Conversion: Convert time series data to 2D images using 

Gramian Angular Summation Fields (GASFs) from the pyts library.
• Image size: GASF images are 34x34 pixels for a balance between 

performance and accuracy.
• Data splitting: Split data into training (70%, 102227 images), testing 

(15%, 21910 images), and validation (15%, 21908 images) sets.
• CNN architecture:

o Two convolution layers with batch normalization and max pooling 
layers applied after each convolution layer, three subsequent 
fully connected layers and an output layer

The training loss of the CNN plotted against the number of iterations (top) and the validation 
accuracy of the CNN plotted against the number of elapsed epochs (bottom); GASF method 

(purple) and FFT spectrogram (gold).

An example of the four signal categories derived from the time series data, along with their corresponding 
GASF images for both Detector 1 and Detector 2.
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CONCLUSION
• Objective: Analyzed the potential of CNNs for classifying gravitational 

wave strain data as background noise/glitches or transient sine-
gaussian/binary black hole merger signals utilizing the GASF method. 
Performance: Exceeded the anticipated 85% accuracy by attaining an 
impressive testing accuracy of > 97%, slightly less than FFT’s 99%.

• Further exploration: Examining the efficacy of the GASF technique in 
GW detection by using a new dataset with SNR ~ 4 for analysis.

• Definition: Method for visualizing time series data in a two-
dimensional image format.

• Conversion: Converts time series into a symmetric matrix which 
represents the pairwise angles between points in the time series.

• Application: Provides visual representation of complex temporal 
patterns which is useful for tasks like classification of time series 
data.

Confusion Matrix
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The confusion matrix for the GASF method (left) compared with the confusion matrix for the FFT 
spectrogram (right).
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