Duke UNIVERSITY

Pointing to a supernova with the DUNE experiment

Janina Hakenmüller for the DUNE collaboration, Duke University, Durham, NC

electron

(10MeV)

10cm

Multimessenger astronomy and DUNE experiment [1]

Supernova bursts:

- unique opportunity to derive astrophysical <u>and</u> particle physics insights \rightarrow detect all available signals
- over 99% of energy released in form of neutrinos
- time frame of burst:
- neutrinos: $\sim 10^{-2}$ to $\sim 10^{5}$
- electromagnetic:
- first signals after a few hours
- => neutrinos as early warning of bursts • Neutrinos only interact very weak

Supernova neutrino detection with DUNE

Need: fast and directional neutrino detection

DUNE experimental setup

liquid argon time-projection chambers: **ionization** and scintillation light totally active calorimeter

Highlights:

• large mass: 4 x 10kt far detector \rightarrow high statistics

• underground: 1.5km rock/ 4300 m w.e.

V

- \rightarrow background suppression
- excellent 3D imaging
 - \rightarrow pointing to supernova,

multimessenger

• v_detection

 \rightarrow complementarity to other experiments

Evaluation of pointing resolution

simulation

Charge current interaction **v** CC: $\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$ ~3000* events for supernova burst at @10kPc

 \rightarrow overall flat angular distribution

Elastic electron scattering **eES**: $\nu_e + e^- \rightarrow \nu_e + e^-$ ~300* events for supernova burst at @10kPc

 \rightarrow **Challenges:** directional disambiguation differentiation of event types (channel tagging)

Machine learning and online pointing code

<u>Strategy:</u> fast determination of direction O(1min), increased precision over time \rightarrow transfer code to standalone code outside of DUNE LArSoft framework => complete workflow to test machine learning upgrades within this insitu computing setup

<u>Neutrino skymap of supernova direction:</u>

of neutrino-induced events, background and noise with Geant4 and Marley wtihin DUNE LArSoft framework

 \rightarrow resolution of head-tail disambiguity: daughter flipping

combination of events to burst

→ desired output for **multimessenger astronomy**

Machine Learning approaches

• hit finding in noise (charges on wires)

 \rightarrow e.g. 1D-CNN to extract low energetic signals from raw waveforms see M. H.L.S. Wang et al., NIM A 1028 /20022) 166371, poster by Van Tha Bik Lian on auto encoder • combination of hits to tracks:

3D pattern reconstruction, track reconstruction at low energies head tail disambiguity \rightarrow studies with ICEBERG, poster by Joshua Queen • real time event selection above background/radiological noise:

start at raw image input 480 x 64 (wire x time) \rightarrow first ever exploration of employing 2D-CNNs on FPGAs for DUNE:

Jwa, Yeon-jae, Giuseppe Di Guglielmo, Lukas Arnold, Luca Carloni, and Georgia Karagiorgi. "Real-time Inference with 2D Convolutional Neural Networks on Field Programmable Gate Arrays for High-rate Particle Imaging Detectors." Frontiers in AI 5 (2022): 855184.

• Event classification (channel tagging):

e.g. application of YOLO (you-only-look-once) by Georgia Karagiorgi and Judicael S.E. Clair for DUNE

• combination of events to bursts:

time

find minimal required amount of information for an acceptable precision

 \rightarrow focus on fast extraction of these information use classifiers from supervised learning for hints

implementation of final code in FPGA to be deployed underground, hls4ml tools (",high level synthesis for machine learning")

Literature:

Figure Crab Nebula: NASA, STScl Figure DUNE facitlities: https://www.dunescience.org/ [1] DUNE collaboration, Eur. Phys. J. C (2021) 81: 423 [2] Al Kharusi, S., et al., New J Phys 23.3 (2021): 031201. [3] DUNE collaboration TDR, Journal of instrumentation 15.08 (2020): T08008 [4] DUNE internal document docdb #27538 (publication in preparation)

