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KALMAN FILTER 

FUTURE WORK

RESULTSMOTIVATION

● Can use brain electrical activity to control 
brain-computer interfaces

● Want to reduce the computational power by 
removing redundant features from data

● How do we account for:
○ relevance
○ sparsity
○ smoothness 

● Goal: implement a convex optimization algorithm 
with recorded data and evaluate its accuracy

METHODS

MOVEMENT TASK

CONVEX FEATURE SELECTION
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We will apply the convex optimization algorithm to  neuropixels and then 
apply it to online brain movement decoding.
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ECoG HAS MANY FEATURES 

Electrodes
244-electrode μECoG array 

Convex optimization selects features for relevance, sparsity, 
and smoothness

Kalman filters (map) internal states (neural activity) to 
observed behavior (cursor position)
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CONVEX FEATURE SELECTION HAS HIGHER 
PERFORMANCE AT LOWER THRESHOLDS

236 electrodes x 5 frequency bands = 1180 features

1. Start with neural, cursor data
2. Train a kalman filter
3. Run convex optimization algorithm
4. Use reduced feature set, predict cursor position
5. Compare predicted cursor position to actual cursor 

position

State-transition: Observation-model:

xₜ = Axₜ₋₁ + wₜ yₜ = Cxₜ₋₁ + qₜ

wₜ ~ N(0, W) qₜ ~ N(0, Q)

State 
transformation

Observation 
transformation

State 
covariance

Observation 
covariance

min θᵢ   -logdet(CᵢTQ-1ΘᵢCᵢ) + λθᵢT1 - 𝜇θᵢT[ θᵢ₋₁ … θᵢ₋ₖ ][ p … pk ]T

 s.t. 0 ≤ θᵢ ≤ 1
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N = 250 Features

Correlation Comparison Between Actual and Predicted Cursor Position


