Using convex feature selection to improve offline movement decoding

Lauren N. Peterson¹, Si Jia Li², Leo R. Scholl¹, Pavithra Rajeswaran², Lydia I. Smith³, Amy L. Orsborn^{1 2 3}

¹Department of Electrical & Computer Engineering, ²Department of Bioengineering, ³Washington National Primate Research Center

MOTIVATION

- Can use brain electrical activity to control brain-computer interfaces
- Want to reduce the computational power by removing redundant features from data
- How do we account for:
 - relevance
 - sparsity
 - smoothness
- **Goal:** implement a convex optimization algorithm with recorded data and evaluate its accuracy

METHODS

- 1. Start with neural, cursor data
- 2. Train a kalman filter
- 3. Run convex optimization algorithm
- 4. Use reduced feature set, predict cursor position
- 5. Compare predicted cursor position to actual cursor position

MOVEMENT TASK

