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3. Results1. Introduction
• Neural decoding predicts behavior from brain signals, which helps us understand brain func-
tion and develop technologies for patients with neurological injury and disease.
• To improve neural decoding, recording and analyzing large populations of neurons is crucial, 
as behavior results from interactions among many neurons in various brain areas.
• Two-photon (2P) calcium imaging is a promising technique for recording activity from thou-
sands of neurons; however, decoding it is challenging because the calcium signal: 1) indirectly 
and non-linearly relates to action potentials, 2) has low sampling rates, and 3) has slow kinetics 
including a long decay time. 
• Here, we present an approach that uses a neural network to decode limb positions of a run-
ning mouse from 2P calcium images. 

2. Methods
2P Calcium image(A) 
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• The experiment setup: While a TRE-GCaMP6s x CAMK2-tTa mouse was running on a ball freely, the neural activity and the behavior of 
the mouse was recorded simultaneously with a 2P microscope (Neurolabware) and cameras, respectively.
(A) An example of 2P calcium image and the calcium �uorescence traces extracted from the 2P images using Suite2p [1]. The sampling
rate is 7.8 Hz. The size of the �eld of view is 1.9 mm by 1.2 mm. The area of imaging includes the motor cortex and the primary somato-
sensory cortex in layer 2/3.
(B) An example of a frame in behavior video and the limb coordinates extracted from the behavior videos using Deeplabcut [2]. The 
sampling rate is 30 Hz. The size of the video frame is 540 pixels by 400 pixels of which 1 pixel equals to 0.15 mm.
(C) The recurrent neural network encoder-decoder. The deconvolved �uorescent traces were used as inputs to the network and the x 
and y coordinates of eight limbs were used as target outputs. The network was designed after the sequence-to-sequence learning 
model for machine translation [3], which allows di�erent length inputs and outputs. The model was modi�ed for the dataset being 
used here, where neural data was mapped to higher-sampling rate behavioral data.

Sample �uorescence traces

(C) 

4. Conclusions
• Our approach can decode behavior from 2P calcium images with a 
lower sampling rate, overcoming perceived limitations of 2P calcium 
imaging as a technique to record behaviorally-relevant neural data. 
• We found that information about all four limbs (contralateral and ipsi-
lateral front and hind limbs) could be decoded from a single cortical 
hemisphere.
• A fraction of the most informative neurons yielded higher decoding 
accuracy than randomly-sampled neurons.
• Accuracy was directly proportional to the number of neurons used to 
decode. 
• Our results validate the use of calcium imaging for decoding continu-
ous behavioral variables to better understand brain function and for 
application in brain-machine interfaces. 
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Continuous limb trajectories of a single limb 
can be decoded from calcium �uorescence traces.

Trajectories of limbs can be decoded both seperately and simultaneously.
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Informative neurons yield higher accuracy decoding 
than randomly-sampled neurons.

Informative neurons are sparsely distributed 
across cortical areas including M1/S1.
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