Graph Neural Network-based particle tracking
as a Service
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- Graph Neural Network (GNN)-based algorithms (ExaTrkX) could be effective for finding track candidates in ITk UNIVERSITY of
- Ilts computational requirements present significant challenges
. Very slow inference on CPUs — GPU-base acceleration will be crucial

- Every site will not have GPUs — We propose to run this algorithm using as a service computing model f‘\l A
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- Current tests show that we can achieve higher throughput by running ExaTrkX as a service
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GNN-based TracK Finding: ExaTrkX

As a Service Computing Model
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* True edges are connections of nodes from the same particle of interest H E H ﬁ - —

* Similar efficiency as the classical algorithm, and
O(107) fake rates (200 pileup)

* Can be accelerated on different coprocessors
(eg GPUs)

- Client - Server connections are made

through network

 Server running on single / multiple GPUs

- Single server can process multiple client
requests

Why as a Service ?

Site 1 Site 2 Site 3

Every Computing site Node Node Node

will not have GPUs ﬁ ﬂ ﬂ ﬁ

* Adding GPUs to existing CPU only sites is expensive

ExaTrkX as a Service

Stand-alone ExaTrkX tool

ExaTrkX timing

Full Workflow: factorized into different steps

GPU (V100) inference is ~20x

* Portable solution for supporting
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