Benchmarking High Level Synthesis for Machine Learning
Implementations versus Hand-optimized SystemVerilog

Waiz Khan, Caroline Johnson, Scott Hauck, Shih-Chieh Hsu, Geoff Jones

Introduction

High Level Synthesis for Machine Learning (HLS4ML)
enables rapid prototyping of Machine Learning models
into hardware designs.

Keras

TensorFlow
PyTorch

'0
-
LR N J %
B
.
.
.
-
3
3
-
.
-
.
B

Co-processing kernel

his 4 ml

compressed

model HLS S
conversion

Custom firmware
design

Usual machine learning ‘[7‘

software workflow
tune configuration
pre/ci§ior|1.
reuse/pipeline
[1]

Performance can be optimized by adjusting parameters
such as Compression, Precision, and Resource Reuse
factors.

reuse = 1
use 4 multipliers 1 time each

—> reuse = 4
O mult use 1 multiplier 4 times
mult
mult

- reuse = 2
o - use 2 multipliers 2 times each

Are HLS4ML's implementations efficient compared to
lower-level implementations?

[1]

FPGA Resources Used

—l— LLITs
{ —i— [DFFs
D5Ps

| Dashed: HLS4ML
Solid: Hand-optimized

Percent Usage
L B K B

j—i
(4

L

=
d

4 5 8 10 12 14 1§ 18 20
Bitwidth

his 4

Accelerated Al
Algorithms for
Data-Driven

mil

2D Conv Layer, Stride 2

Reuse Factor of 9:

PERFORMANCE Min Period (ns) Latency (cycles Latency (ns) |l (cycles) Il (ns)

HLS4ML - 256 6.2 592.5 3673.5 459.75 2850.45
HLS4ML - 128 6.9 463.5 3198.15 395.25 21271.225
Us 6.9 219 1911.1 105.75 729.675
Model RESOURCES LUTs Total LUTs DFFs RAM DSP

HLS4ML - 256 256 707 7073 11031 2

HLS4ML - 128 128 6502 8799 35

Us 231 2318 865 0.5

Available On Chip 693120 86640 1470

HLS4ML 256 1.02% 12.73% 0.14% 0.44%
HLS4ML 0.94% 10.16% 0.24% 0.67%
Us 0.33% 1.00% 0.03% 0.67%

Percentage of Max Resource Utilization vs. Iteration Interval

30 -

® hisdml conv reuse 3 @
A hisdml conv reuse 9
-5 | @ usconvreuse 3
A Usconvreuse 9
2
o 20
QL
(¥
-
O
il -
-
a A
&
x 10 4 ® A
(4]
=
5 -
il
A
O 3 1 ' 7 7 | | |
500 1000 1500 2000 2500
Il (ns)

Hand-implemented Conv2D Layer (stride of 2) with Reuse Factor of 9

achieves better performance than the HLS4ML implementations.
52.8% lower latency
7/3.2% faster iteration interval
64.3% fewer total LUT's used

90.2% fewer DFFs used

Batch Normalization Layer

Currently under development, small scale model functional

Batch Norm Layer algorithm:

Cycle O 1 2 3 . 9) 6 / 8 9 10 11

| | & " i po i | : ' —
Input first batch (4) Output first batch (4)
.__Process second batch (4)
Input third batch (4)

Process first batch (4)
Input second batch (4)

Batch size of 4, pipelined to three major stages, each taking four cycles

Values processed in the following order: (each step takes one cycle)
Batch Mean, Batch Variance, Normalize value, Scale & Shift

Pipelined for efficiency to allow for parallel usage of resources

Small Scale Model Results: (values are in fixed point, 8 integer bits, 8 fraction bits)

Name

s Clk
. ‘reset
> W in_data[15:0]
> W inputCount[0:3]
> W inputvaluesSum[15:0]
> W batchMean[15:0]
» W variancelnterm2[0:3])[15:0]
> W varianceSum[15:0]
> W batchVariance[15:0]

» B inputCount]0: 3]

Seead (outputvalues, converted to decimal)
. W [0)[15:0] 38 R | { fead f1 343
- N [1][15:0] 8 { f£5 -0.449
- W [2][15:0] D072 O 007z 0.494
. W [3][15:0] 0157 ' 0157 1.340

Conclusion

The possibility to improve CONV2D implementation in HLS4ML to be
faster or efficient is demonstrated. The lower-level implementation required
fewer resources to produce a model with lower latency.

Batch Normalization layer can be implemented efficiently in hardware but
will require large LUTs to accelerate some parts of the computation.

Next Steps

Implement an HLS4ML-inspired SystemVerilog implementation of Conv2D,
stride 2 to improve performance

Implement a scaled-up batch norm layer, to compare with HLS4ML

References

NSF OAC-2117997

[1] J. Duarte et al 2018 JINST 13 P07027

	Slide 1: Benchmarking High Level Synthesis for Machine Learning Implementations versus Hand-optimized SystemVerilog

