A3D3 Workshop HEP Hackathon Project

Real-Time Anomaly Detection with HEP Open Data Daniel Diaz, Elham E Khoda, Melissa Quinnan

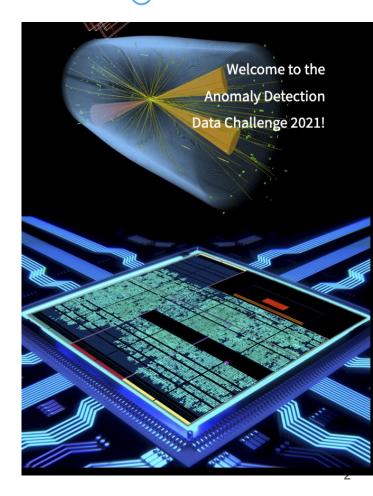
July 12-14 2023

Introduction

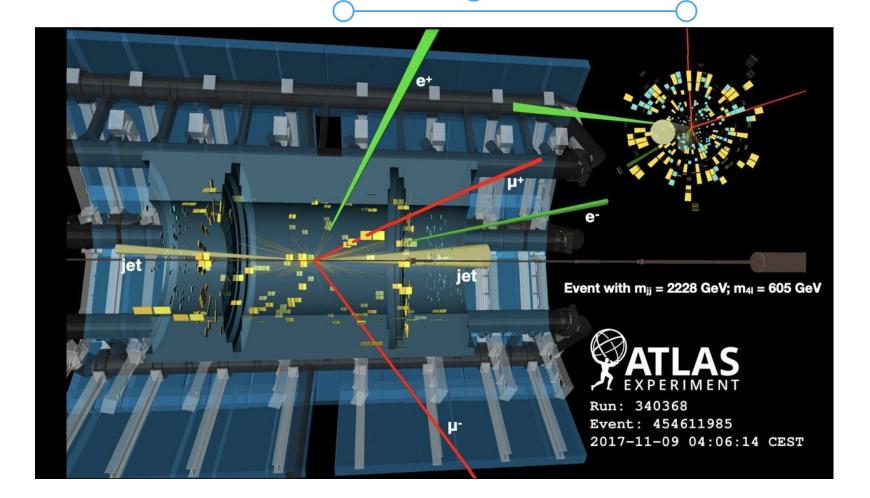
• We are going to work on the Anomaly Detection Data Challenge 2021

Unsupervised new physics detection at 40 MHz

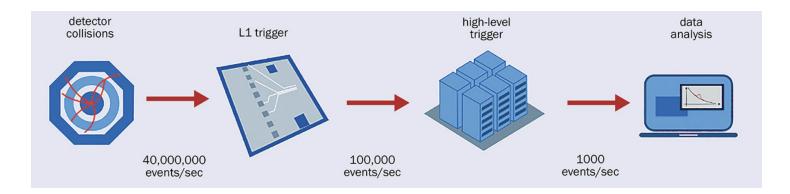
- Resources:
 - Challenge website
 - Challenge introduction from ML4Jets 2021
 - Challenge example code



Particle physics collisions



HEP Data Processing



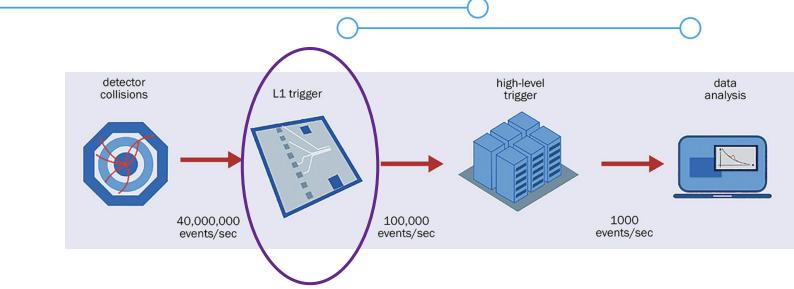
L1 Trigger (hardware: FPGAs) – O(µs) hard latency

• Typically coarse selections are applied

High Level Trigger (software: CPUs) – O(100 ms) soft latency

 More complex algorithms (full detector information available), some BDTs and DNNs used

Focus of the challenge: L1 Trigger



- L1 Trigger (hardware: FPGAs) O(µs) hard latency
 - Typically coarse selections are applied

High Level Trigger (software: CPUs) – O(100 ms) soft latency

 More complex algorithms (full detector information available), some BDTs and DNNs used

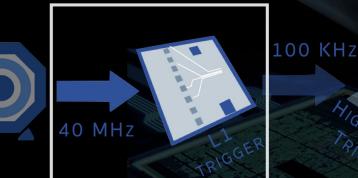
Unsupervised new physics detection at 40 MHz

1 KHz

1 MB/EVT

Idea is to **look for** something **very rare and unusual** directly in the **Level-1 Trigger** without any signal hypothesis in mind

The challenge is to find a-priori **unknown** and **rare New Physics** hidden in a data sample dominated by ordinary Standard Model processes



The deliverable is a developed algorithm that can be deployed and run in L1 with strict latency requirement of < 1 microsecond

The task is therefore to design an architecture that maximises the sensitivity for New Physics but at the lowest possible resource and latency budget Taken from

<u>Challenge</u> introduction from <u>ML4Jets 2021</u>

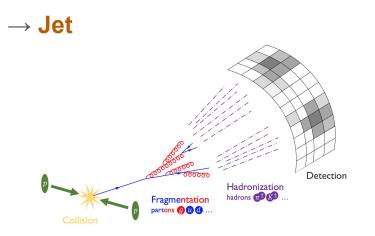
Hackathon Dataset

- Get the dataset from here: <u>https://mpp-hep.github.io/ADC2021/</u>
- There are 5 dataset files
 - Background dataset
 - 4 different signal datasets

- **Dataset dimensionality:** 57 = 19x3 "particles"
 - o 10 jets
 - 4 electrons
 - 4 muons
 - MET

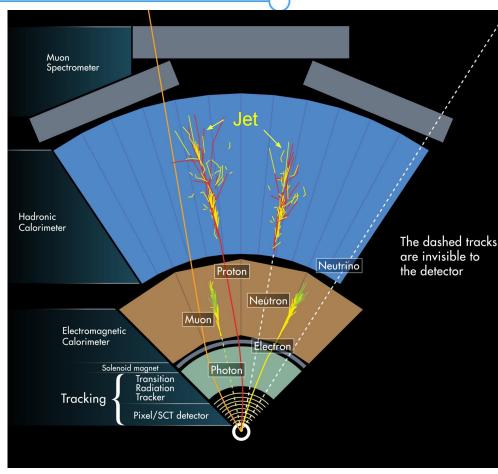
Relevant Particle Responses

A quark always forms a spay of particle before getting detected



MET = Missing Transverse Energy

corresponds to all the missing particles, invisible to the detector



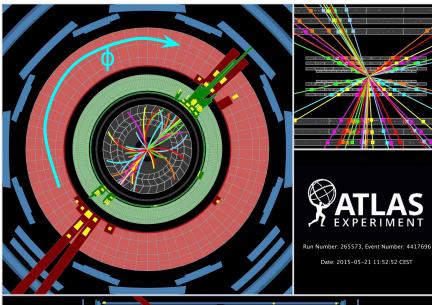
Hackathon Dataset

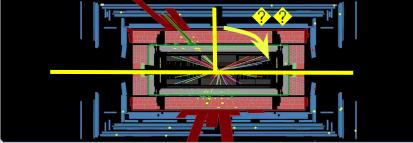
- Get the dataset from here: <u>https://mpp-hep.github.io/ADC2021/</u>
- There are 5 dataset files
 - Background dataset
 - 4 different signal datasets

- Dataset dimensionality:
 - 57 = 19x3 "particles"
 - 10 jets
 - 4 electrons
 - 4 muons
 - MET



Eta and Phi





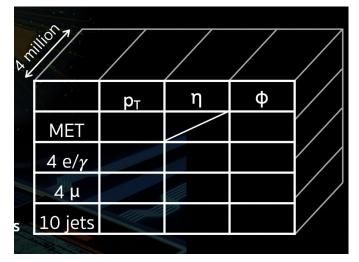
jet image

Hackathon Training Dataset

Train with <u>4 million background</u>-like events

The file contains:

- Inclusive W production, with $W \rightarrow I_{\nu}$ (59.2%)
- Inclusive Z production, with $Z \rightarrow II (6.7\%)$
- tt production (0.3%)
- QCD multijet production (33.8%)



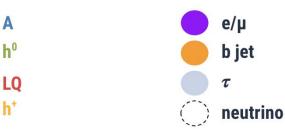
Paper describing the dataset: <u>https://arxiv.org/abs/2107.02157</u>

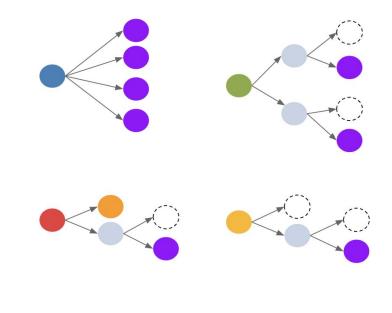
Model Development and Evaluation

Evaluate performance on several different New Physics simulated samples

New physics benchmarks

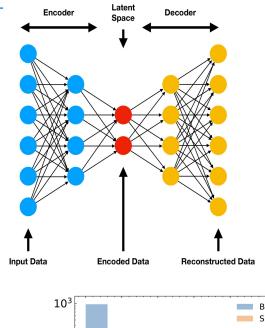
- Neutral scalar boson (A), 50 GeV \rightarrow 4 I
- Leptoquark (LQ), 80 GeV \rightarrow b t
- Scalar boson (h^0), 60 GeV \rightarrow T T
- Charged scalar boson(h^+), 60 GeV $\rightarrow \tau v \equiv$

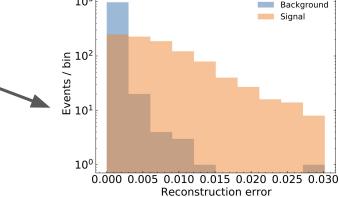




Autoencoder: One of the popular choice

- Train the model with background-enriched data
- Encode the inputs to a low dimensional representation and try to decode it back to the input set
- Anomalous events are often poorly reconstructed given low, if any, examples present during training





Some Published Solutions:

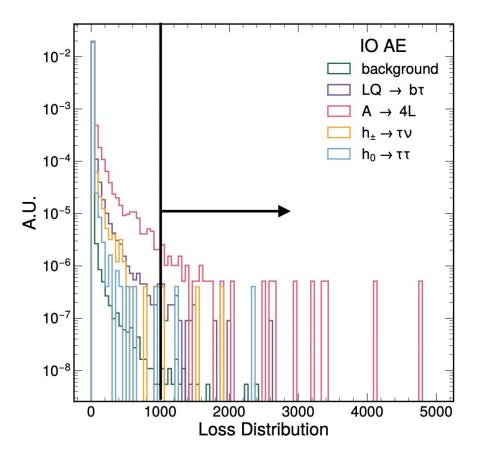
The first paper by the ADC2021 challenge organizers:

https://arxiv.org/abs/2108.03986

⇒ Studies Autoencoders and Variational Autoencoders (VAE)

Another solution-based on contrastive learning (using Autoencoders):

https://arxiv.org/abs/2301.04660



Challenges and Expectations

Real-life application: Low-Latency inference (~ 1 µs)

⇒ Make sure your model is not too huge and can obey this latency constraints

- An estimate of the algorithm efficiency can be obtained by calculating the floating- point operations per second (FLOPs)
- Example code to compute FLOPs: <u>computeFLOPs.ipynb</u>

Some results are already published based on Autoencoders and VAEs

⇒ Do not use vanilla Autoencoders and Variational Autoencoders

Useful Resources

We will use <u>a3d3-hackathon/hep-ad-2023</u> repository to develop our code

Other Resources:

- Challenge website
- <u>Challenge introduction from ML4Jets 2021</u>
- Challenge example code
- Toolkit for implementing ML inference on FPGAs: <u>hls4ml</u>