2023 A3D3 Workshop Hackathon DadarlatLab Dataset

Seungbin Park pa Megan Lipton lip Maria Dadarlat m

park1377@purdue.edu liptonm@purdue.edu mdadarla@purdue.edu

DADARLAT LAB

https://engineering.purdue.edu/DadarlatLab

The Dadarlat Lab has two main areas of study:

- (1) to understand how sensory information is processed in the visual and somatosensory systems
- (2) to apply these insights towards the development of artificial sensation.

To address these questions, we use a combination of animal behavior, in-vivo

electrophysiology, 2-photon-imaging, and electrical stimulation.

Megan Lipton

Dr. Maria Dadarlat-Makin

Neural Decoding

: Neural Signal \rightarrow Behavior

Possible Hackathon Projects

- Main goal: To explore the datasets
- 2P+Touch
 - (Classification) Decoding the time when the touch stimulus was given from 2P calcium images
 - (Classification) Decoding the limb in which the touch stimulus was given from 2P calcium images
- 2P+Running
 - (Regression) Decoding continuous limb trajectories of a running mouse from 2P calcium images
- Reconstruction
- Anithing you want

Two-Photon Calcium Imaging

: a promising technique for recording large populations of neurons

When neurons fire action potentials, intracellular calcium levels rise. Two-Phton calcium imaging measures neural activity by detecting fluorescence from fluorescent molecules that bind to calcium.

- (1) Indirect and non-linear relation to action potentials
- (2) Slow kinetics with a long decay time
- (3) Time variance between neural activities in a frame
- (4) Low sampling rate

(1) Indirect and non-linear relation to action potentials

- (2) Slow kinetics with a long decay time
- (3) Time variance between neural activities in a frame

(4) Low sampling rate

Ali et al., 2020

- (1) Indirect and non-linear relation to action potentials
- (2) Slow kinetics with a long decay time
- (3) Time variance between neural activities in a frame

(4) Low sampling rate

Weber et al., 2014

- (1) Indirect and non-linear relation to action potentials
- (2) Slow kinetics with a long decay time
- (3) Time variance between neural activities in a frame

(4) Low sampling rate

Experiments

0 0.5 1 1.5 2

-0.5

A/P distance from bregma (mm)

-2.5

-2

-1.5

0.5

1.5

M1

11

Fluorescence Traces

2P Calcium Imaging

- Neurolabware
- Layers: L2/3
- Field of view: 1.9 mm x 1.2 mm; Laser: 920 nm
- Frame rate: 7.8 Hz
- Preprocessing: suite2p, Normalization

Registration Cell Detection Signal extraction Spike deconvolution

https://www.suite2p.org/ Doc on Outputs:https://suite2p.readthedocs.io/en/latest/outputs.html

Limb Coordinates from a Running Mouse

Behavior Video

Limb Coordinates

- Freely running on the ball.
- Trained for 4 days, 1 hour per day.
- Frame rate: 30 Hz
- Preprocessing: Deeplabcut, Normalization

http://www.mackenziemathislab.org/deeplabcut

All limbs(contralateral/ipsilateral, front/hind) could be decoded both simultaneously and separately from a single cortical hemisphere.

16

f_gt

h_gt
 f_pred

h_pred

Examples of Open Datasets

Allen Brain Map https://portal.brain-map.org/

Neurodata Without Borders https://www.nwb.org/example-datasets/

Visual Behavior – 2P

https://portal.brain-map.org/explore/circuits/visual-behavior-2p

Documentation

\triangle

These datasets are not validated yet. We are currently working on them.

Guidelines:

- All raw data are available.
- Considering the limited time, preprocessed data is being provided. It was preprocessed and synchronized, so you can just start to use them right away.
- Choose one behavior between touch (classification) and movement (regression).
 Recommend trying classification first because it is simpler.
- Try Animal 1 first. And validate more with Animal 2 if Animal 1 worked.
- Research ideas
 - It is usual to use deconvolved fluorescence traces.
 - But related studies suggest using raw 2P microscope images or fluorescence traces that are not deconvolved as future plans, because they might include more information.
 - If you want to try to use raw 2P microscope images or unprocessed original fluorescence traces, please feel free to go explore and have fun.
 - Consider the characteristics of the datasets 2P images and behaviors.
 - ex) Latency, GNN using spatial information, Denoising ...
 - LFADs on 2P: https://www.nature.com/articles/s41593-022-01189-0
- Even though you don't get the final results, focus on exploring data & we would love to hear about research ideas on the datasets or collaborations.
- Data: https://drive.google.com/drive/folders/1kFaLNqckbXtQ8RgJwPDjKW_PoX5e_Kyi?usp=sharing

Animal1_Movement
Animal1_Touch
Animal2_Movement
Animal2_Touch

Animal1_Movement <u></u>(*) Name 📙 Behavior 🔼 behav_likeli_final.npy 🔼 behav_norm.npy 🔼 behav_ori.npy 🔼 ffneu_final.npy 🔼 idx_coord_neural.npy 🔼 spks_final.npy 🔼 stat.npy 🖻 behav_normalized.png 📓 behav_original.png coord_likelihood.png 🖻 ffneu_final_neural.png 📄 ffneu_final_neural_avg.png number_frames_hist.png spks_final_neural.png spks_final_neural_avg.png

on ➢ Animal1_Touch	~	Ū
Name		
📕 Behavior		
🔼 ffneu_final.npy		
🔼 idx_coord_neural.npy		
🔼 spks_final.npy		
🔼 stat.npy		
🔼 touch_behav.npy		
🔋 ffneu_final_neural.png		
🔋 ffneu_final_neural_avg.pr	ıg	
🔋 number_frames_hist.png		
🖹 spks_final_neural.png		
🔋 spks_final_neural_avg.png	9	
🖹 touch.png		

Preprocessed				
File name	Description	Shape		
Neural Signal				
ffneu_final.npy	ffneu=F-0.7*Fneu(Neuropil) Normalized, Synchronized	(n_neuron, seq_neuron)		
spks_final.npy	Deconvolved Normalized, Synchronized	(n_neuron, seq_neuron)		
idx_coord_neural.npy	Array that tells neural frame number for each behavior frame.	(seq_behav,)		
calcium_final.npy	Raw calcium images	(512, 796, seq_neuron)		
stat.npy	Information about neuron positions Docs on suite2p website	(n_neuron,)		
Movement				
behav_ori.npy	(Movement) Original limb coordinates	(8, seq_behav)		
behav_norm.npy	(Movement) Processed limb coordinates. Normalized, Synchronized	(8, seq_behav)		
behav_likely_final.npy	(Movement) Likelihood of predicted pixel from Deeplabcut	(4, seq_behav)		
Touch				
touch_behave.npy	(Touch) Original touch stimulus loaded from cvs Start behavior frame, End behavior frame, limb(1=front rignt, 2=Hind right, 3=Front left, 4=Hind left)	(n_stimuli, 3)		

im = np.zeros((ops_data['Ly'], ops_data['Lx']))
for n in range(stat.shape[0]):
 ypix = stat[n]['ypix'][~stat[n]['overlap']]
 xpix = stat[n]['xpix'][~stat[n]['overlap']]
 im[ypix,xpix] = importance[n]#n+1

Behavior, Movement			
File name	Description		
limb1.avi limb2.avi	Behavior videos. Limb1: Right, Limb2: Left		
limb1.csv limb2.csv	FL: Front Left, HL: Hind Left x,y: x and y coordinates of a limb likelihood: Likelihood of pixel prediction from Deeplabcut		

Behavior, Touch	
File name	Description
limb1.avi limb2.avi	Behavior videos. Limb1: Right, Limb2: Left
touch_timestamps.csv	start, end: behavior frame of start/end of stimulus limb: 1=front rignt, 2=Hind right, 3=Front left, 4=Hind left

Synchronization

