A3D3 Hackathon Neuroscience Group

High Throughput AI Methods and Infrastructure Workshop July 14th, 2023

Group Members & Experts

Will Benoit MMA

Anthony Aportela HEP

Jack Rodgers HEP

Andrew Skivington HEP

Veronica Obute Material Science

Yichen Guo Material Science

Seungbin Park Neuro

Megan Lipton Neuro

Maria Dadarlat Neuro

Mia Liu HEP

Introduction to Dataset

Strategy Outline

Tasks

- (1) Decoding
- (2) Reconstruction

Goals

- (1) Increase accuracy in decoding/reconstruction
- (2) Modeling neural activity \rightarrow to understand how neurons work

Approaches/Methods

- (1) Basic data exploration
- (2) GNN
- (3) Autoencoders, transformers

Idea #0: Data Exploration and Domain Learning

> 200 -- 1500 X

Number of peaks per neuron

https://academic.oup.com/bib/article/22/2/1577/6054827 http://vpnl.stanford.edu/papers/kgs_etal_TICS.06.pdf https://suite2p.readthedocs.io/en/latest/FAQ.html

Idea #1 Graph neural networks (GNNs)

Input

- **Group Members:** Anthony Aportella (UCSD), Andrew Skivington (UCSD)
- **Goal:** To predict sensory state from brain's neural state
- Strategy:
 - Touch/limb classification
 - Preliminary graph convolutional net (GCN)
 - Input = graph of rat neurons
 - Output = limb prediction
 - Node features:
 - Absolute coordinates
 - Time series amplitude
 - Edge features:
 - Distance between nodes
 - "Activation" between nodes

Helpful links:

- https://gnn.seas.upenn.edu/lecture-11/
- <u>https://paperswithcode.com/paper/a-survey-on-g</u> raph-neural-networks-for-time

- Debugging vanishing gradient problem with current architecture
 - Exploring GRNN
 - GRU vs LSTM GNNs

Idea #2 (Autoencoder/Transformer)

- Group members: Jack Rodgers, Will Benoit, Yichen Guo, Veronica Obute
- Strategy:
 - Transformer model that learns the neural structure of touch/proprioceptive stimuli. Could be extended to learn specific regions of the brain where response takes place
 - Autoencoder that learns the background, treat the problem like anomaly detection
 - Train/test both within each mouse and between mice to explore transferability of models

• Progress:

- Processed/separated data into relevant formats for both transformer and autoencoder
- Created initial outline of the transformer model architecture

• Helpful links:

- https://arxiv.org/abs/1706.03762
- https://www.suite2p.org/
- <u>https://lilianweng.github.io/posts/2023-01-10-inference-optimization/</u>

Timeline & Long Term Goals

- Monthly zoom meetings to discuss progress with each topic
 - Highlight challenges and next steps
- Regular communication/updates in slack channel
- Test models on additional mouse data (n=6)
- Eventually test on running data?

