
Loukas Gouskos

Jet flavor identification for FCCee

ECFA Higgs Factories: Reconstructions, 2023

Dolores Garcia Marti

Credits to: Andrea Del Vecchio, Laurent Forthomme, Franco Bedeschi, 
Michele Selvaggi, Loukas Gouskos

[EPJ C 82 646 (2022) link]

https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1
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● Flavour tagging essential for the e+e- 
program, e.g.:

● Higgs Sector:

● (HL-)LHC can access 3rd gen. couplings and 
a few of 2nd generation

● Future e+e-: Measure Higgs particle properties 
and interactions in challenging decay modes

o E.g. cc, 1st gen quarks/fermions, gg [?]

● Top quark physics [if E
CM

 sufficient]

● Precise determination of top properties
[mass, width, Yukawa]

● QCD Physics

● strong coupling (a
S
), event shapes ..

● modelling of hadronization, MC tuning, …
● ….

Physics motivation
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Basics of flavour tagging (b/c)

● Large lifetime
○ b (c) lifetime ~1 ps (~0.1ps)

○ b (c) decay length: ~500 μm 

○ (2-3) mm for ~50 GeV boost

● Displaced vertices/tracks
○ Large impact parameters

○ Tertiary vertices when B hadron 

decays to C hadron

● Large track multiplicity
○ ~5 (~2) charged tracks/decay

● Presence of non-isolated e/μ
○ ~20 (10)% in B (C) decays

Detector constraints:
Need power pixel/tracking detectors

- Good spatial resolution
- As little material as possible
- Precise track alignment
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Input variables
● Comparison of input distributions for different jet flavors
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Constituent relative energy Impact parameter (d
0
)
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Basics of flavour tagging (strange)
● Large Kaon content

○ Charged Kaon as track:

■ K/pi separation
● TOF

● dEdx/dNdx

○ Neutral Kaons:

■ K
S
 → 𝞹𝞹

● Displaced 2 track 

vertex

● 4 photons 

■ K
L

● TOF vs n ? 

Detector constraints:

- timing detectors
- charged energy loss (gas/silicon)
- cherenkov detectors
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[2003.09517] Momentum weighted fraction:
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● Count number of primary ionization
clusters along track path 

● ToF results in good Κ/π separation at
low-momenta

● Modules added in Delphes

Particle ID: dN/dx and ToF
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● Jet representation: critical for powerful jet tagging algorithms
● In theory: A spray of particles produced by the hadronization of q and g

● Experimentally: A cone of reconstructed particles in the detector

● Reminder: Current and future experiments have / will have a PF-based event 
reconstruction

● Output: mutually exclusive list of particles

● Rich set of info/particle
o Energy/momentum, position

o Displacement, particle type

o timing

o …

● Until recently: Jet taggers based on human-inspired higher-level observables
● Inputs to cut-based or simple ML-based algorithms

● Move to particle-based jet tagging: i.e. exploit directly the full list of jet 
constituents (ReconstructedParticles) and new advances in ML
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Designing a Graph-based tagger

[O(50) properties/particle] 
x [~50-100 particles/jet]
 ~O(1000) inputs/jet
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Full list of input variables
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● Jet: intrinsically unordered set of particles with relationships b/w the particles
● i.e. human-chosen ordering not optimal

● A very active research area in ML community: Point clouds
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Designing a Graph-based tagger

Represent the object as a 
set of “points”

Group points based on 
similarity [usually using ML]

e.g. Identify parts

[Ref] PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, C.R.Qi et all, 2017
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● Jet representation:  “Point Cloud”→ “Particle Clouds”
● Treat the jet as an unordered set of particles

● Algorithm design: Graph Neural Networks
● Particle cloud represented as a graph

● Each particle: node of the graph; Connections between particles: the edges

● Follow a hierarchical learning approach
● First learn local structures →  then move to more global ones

ParticleNet(-ee)
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PF Cands
[up to 75/particle]

H. Qu and LG
PRD 101 056019 (2020)
F. Bedeschi, M. Selvaggi, LG
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● Last step: Learn from the graphs
● Follow a hierarchical learning approach:

First learn local structures and then more global ones

● Convolution operations proven to be very powerful
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Designing a Graph-based tagger 

Fixed grid: →
Convolution
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● Last step: Learn from the graphs
● Follow a hierarchical learning approach:

First learn local structures and then more global ones

● Convolution operations proven to be very powerful
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Designing a Graph-based tagger 

Fixed grid:

point/particle 
cloud:

→
Convolution

… but not straightforward on 
    point/particle clouds
- Irregular and unordered sets
- Requires a permutation 
  invariant convolutional operation
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● Find the k-nearest neighbors of each point
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EdgeConv: Convolution on point clouds

k-Nearest Neighbors
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Y. Wang et 
al.

https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1801.07829
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● Find the k-nearest neighbors of each point

● Design a permutation invariant convolution operation
● Define an edge feature function → aggregate edge features w/ a symmetric func.
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EdgeConv: Convolution on point clouds

k-Nearest Neighbors Convolution operation
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ParticleNet:
UΘ: MLP [shared across edges]
     : average over all k-NN

Y. Wang et 
al.
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● Find the k-nearest neighbors of each point

● Design a permutation invariant convolution operation
● Define an edge feature function → aggregate edge features w/ a symmetric func.

● Update Graph (ie Dynamic Graph CNN, DGCNN): 
Using kNN in the feature space produced after EdgeConv

● Can be viewed as a mapping from one particle cloud to another
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EdgeConv: Convolution on point clouds

k-Nearest Neighbors Convolution operation Update Graph
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ParticleNet:
hΘ: MLP [shared across edges]
     : average over all k-NN

Y. Wang et 
al.
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● Based on EdgeConv and DGCNN 
● but customized for the jet tagging task
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ParticleNet for jet tagging (II)

EdgeConv block ParticleNet Architecture

From local 
to more 
global 

structures

particles 
distributed in 

η-φ
Introduced: 
- features beyond 
   spatial coordinates
- residual connections

H. Qu and LG
PRD 101 056019 

(2020)

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.08570
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ParticleNet in FCCSW 
Sample Generation for training 

● Generation of the samples in EDM4hep (whole event reconstructions, features 
for training not explicit)

● FCCAnalyses (wrapper RDataFrame)
● Per-event → per-jet structure
● 2 stages. 1: read edm4hep and extract features. 2: produce n-tuples one per class.
● final dataset: 5/7 classes and 106 events per class
● trained on gpus (A100 )

    Inference
● Inference in FCCAnalyses:

● load ONNX training files
● Extract hard vertex and perform jet clustering
● Extract jet constituents and compute observables
● Evaluate NN → output: one probability per category
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EDM4Hep Event ROOT Tree Jet ROOT Tree

PyROOT

Weaver (PyTORCH)

ONNX Model 

Training the model 

FCCAnalyses
 (RDF)

Jet Clustering
(JetClusteringHelper)

Jets 

Jet Constituents

Jet Constituent Data
(JetFlavourHelper)
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EDM4Hep Jet Tagging Scores 

ONNX Model 

Inference 

FCCAnalyses
 (RDF)

Jet Clustering
(JetClusteringHelper)

Jets 

Jet Constituents

Jet Constituent Data
(JetFlavourHelper)

Jet Inference
(JetFlavourHelper)
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Inference
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Obtain input 
parameters

Jet clustering

Run inference

Loading model 
parameters

JetFlavourHelper

JetClusteringHelper
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ParticleNet@FCCee: b/c tagging

WP
Εff 
(b)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(c)

Loose 90% 2% 0.1% 2%

Medium 80% 0.7% <0.1% 0.3%

WP
Εff 
(c)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(b)

Loose 90% 7% 7% 4%

Medium 80% 2% 0.8% 2%

b-tagging c-tagging

better

betterLHC
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ParticleNet@FCCee: s/g tagging
strange-tagging

WP
Εff 
(s)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(c)

Mistag
(b)

Loose 90% 20% 40% 10% 1%

Medium 80% 9% 20% 6% 0.4%

WP
Εff 
(g)

Mistag 
(ud)

Mistag 
(c)

Mistag 
(b)

Loose 90% 25% 7% 2.5%

Medium 80% 15% 5% 2%

better
better

gluon -tagging
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Impact of detector configurations
Strange tagging [PID] c-tagging [PIX layers]

Ideal from 
MC

better

better

● dN/dx brings most of the gain
additional gain w/ TOF (30ps)

● TOF (3ps): marginal improvement

● dN/dX + TOF(30ps) ~ perfect PID 

● Additional pixel layer 1 cm from 
beam pipe vs 1.5 cm:

● improved BKG rejection 
in c-tagging

● marginal/no improvement 
in b-tagging
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Pushing the limits further
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ParticleNet-EE

Use the k-nearest particles
[k=8 for ParticleNet-EE]

ParticleTransformer

- Fully connected graph
- Include per-particle-pair properties 
  more directly

based on:
H. Qu, C. Li, S. Qian

ICML 2022

https://arxiv.org/pdf/2202.03772.pdf


Loukas Gouskos

● ParticleNet-ee trained using Pythia 8 samples
● tested on Pythia 8 [solid lines]

● tested on WZ-Pythia6 [dashed lines]

● Modest dependence on choice of generator

● More parton showers coming up (Herwig, Sherpa…)

Robustness
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● ParticleNet-ee trained 7 classes
● 5 classes, B, C, S, G, Q [solid lines]

● 7 classes, B, C, S, G, U, D, TAU [dashed lines]

Extension
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Tagger update(up and down)

Up -tagging Down-tagging

● Up vs Down discrimination seems possible thanks to jet charge
● 30% bkg eff at 50% signal (better than random coin toss)
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● Powerful jet flavour identification important for the e+e- physics program

● Sophisticated jet tagging algorithms developed for e+e- experiments 
● Striking improvement in tagging performance compared to previous tools

● allows us to explore more of the detector and event reconstruction potential

● Integrated in FCCSW [data preparation, training, validation, inference, analysis] and 
used in FCCee physics analyses

● Developments in ML will give insights (Rate distortion method, layer wise 
relevance propagation method (LRP))

● Still room for improvement / other ideas to try:
● secondary tasks, secondary vertexing regression

● New higher order graph architectures

Summary
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