

Jet flavor identification for FCCee

ECFA Higgs Factories: Reconstructions, 2023

Dolores Garcia Marti

Credits to: Andrea Del Vecchio, Laurent Forthomme, Franco Bedeschi, Michele Selvaggi, Loukas Gouskos [EPJ C 82 646 (2022) <u>link</u>]

Physics motivation

- Flavour tagging essential for the e⁺e⁻ program, e.g.:
 - Higgs Sector:
 - (HL-)LHC can access 3rd gen. couplings and a few of 2nd generation
 - Future e⁺e⁻: Measure Higgs particle properties and interactions in challenging decay modes
 - E.g. cc, 1st gen quarks/fermions, gg [?]
 - Top quark physics [if E_{CM} sufficient]
 - Precise determination of top properties [mass, width, Yukawa]
 - QCD Physics
 - strong coupling (a_s), event shapes ..
 - modelling of hadronization, MC tuning, ...

Basics of flavour tagging (b/c)

Detector constraints:

CÊRN

Need power pixel/tracking detectors

- Good spatial resolution
- As little material as possible
- Precise track alignment

- Large lifetime
 - b (c) lifetime ~1 ps (~0.1ps)
 - $\circ~$ b (c) decay length: ~500 μm
 - \circ (2-3) mm for ~50 GeV boost
- Displaced vertices/tracks
 - Large impact parameters
 - Tertiary vertices when B hadron decays to C hadron
- Large track multiplicity
 - ~5 (~2) charged tracks/decay
- Presence of non-isolated e/μ
 - ~20 (10)% in B (C) decays

Input variables

CÊRN

• Comparison of input distributions for different jet flavors

Basics of flavour tagging (strange)

CÊRN

- Large Kaon content
 - Charged Kaon as track:
 - K/pi separation
 - TOF
 - dEdx/dNdx
 - Neutral Kaons:
 - $K_{S} \rightarrow \pi\pi$
 - Displaced 2 track vertex
 - 4 photons
 - TOF vs n ?

Detector constraints:

- timing detectors
- charged energy loss (gas/silicon)
- cherenkov detectors

Particle ID: dN/dx and ToF

- Count number of primary ionization clusters along track path
- ToF results in good K/π separation at low-momenta
- Modules added in Delphes

Designing a Graph-based tagger

- Jet representation: critical for powerful jet tagging algorithms
 - In theory: A spray of particles produced by the hadronization of q and g
 - Experimentally: A cone of reconstructed particles in the detector
- Reminder: Current and future experiments have / will have a <u>PF-based</u> event reconstruction
 - **Output:** mutually exclusive list of particles
 - Rich set of info/particle
 - Energy/momentum, position
 - Displacement, particle type
 - \circ timing
 - o ...

- [O(50) properties/particle] x [~50-100 particles/jet] ~O(1000) inputs/jet
- Until recently: Jet taggers based on human-inspired higher-level observables
 - Inputs to cut-based or simple ML-based algorithms
- Move to particle-based jet tagging: i.e. exploit directly the full list of jet constituents (ReconstructedParticles) and new advances in ML

Full list of input variables

Variable	Description					
Kinematics						
$E_{ m const}/E_{ m jet}$	energy of the jet constituent divided by the jet energy					
$ heta_{ m rel}$	polar angle of the constituent with respect to the jet momentum					
$\phi_{ m rel}$	azimuthal angle of the constituent with respect to the jet momentum					
Displacement						
d_{xy}	transverse impact parameter of the track					
d_z	longitudinal impact parameter of the track					
SIP_{2D}	signed 2D impact parameter of the track					
$\mathrm{SIP}_{\mathrm{2D}}/\sigma_{\mathrm{2D}}$	signed 2D impact parameter significance of the track					
SIP_{3D}	signed 3D impact parameter of the track					
$\mathrm{SIP}_{\mathrm{3D}}/\sigma_{\mathrm{3D}}$	signed 3D impact parameter significance of the track					
$d_{ m 3D}$	jet track distance at their point of closest approach					
$d_{ m 3D}/\sigma_{d_{ m 3D}}$	jet track distance significance at their point of closest approach					
$C_{ m ij}$	covariance matrix of the track parameters					
	Identification					
\overline{q}	q electric charge of the particle					
$m_{ m t.o.f.}$	$m_{\rm t.o.f.}$ mass calculated from time-of-flight					
dN/dx	N/dx number of primary ionisation clusters along track					
isMuon	if the particle is identified as a muon					
isElectron	if the particle is identified as an electron					
isPhoton	if the particle is identified as a photon					
isChargedHadron	gedHadron if the particle is identified as a charged hadron					
isNeutralHadron	if the particle is identified as a neutral hadron					

Designing a Graph-based tagger

- Jet: intrinsically <u>unordered set</u> of particles with relationships b/w the particles
 - i.e. human-chosen ordering not optimal
- A very active research area in ML community: **Point clouds**

[Ref] PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, C.R.Qi et all, 2017

ParticleNet(-ee)

- Jet representation: "Point Cloud"→ "Particle Clouds"
 - Treat the jet as an <u>unordered set of particles</u>
- Algorithm design: Graph Neural Networks
 - Particle cloud represented as a graph
 - Each particle: **node** of the graph; Connections between particles: the **edges**
- Follow a hierarchical learning approach
 - First learn local structures $\rightarrow\,$ then move to more global ones

H. Qu and LG <u>PRD 101 056019 (2020)</u> F. Bedeschi, M. Selvaggi, LG <u>EPJ C 82 646 (2022)</u>

Designing a Graph-based tagger

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn <u>local</u> structures and then more <u>global</u> ones
- Convolution operations proven to be very powerful

Designing a Graph-based tagger

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful

point/particle cloud: ... but not straightforward on point/particle clouds

- Irregular and unordered sets
- Requires a permutation

invariant convolutional operation

EdgeConv: Convolution on point clouds

• Find the *k*-nearest neighbors of each point

EdgeConv: Convolution on point clouds

• Find the *k*-nearest neighbors of each point

Y. Wang et al.

- Design a permutation invariant convolution operation
 - Define an **edge feature** function → **aggregate** edge features w/ a symmetric func.

EdgeConv: Convolution on point clouds

- Find the k-nearest neighbors of each point
- Design a permutation invariant convolution operation
 - Define an edge feature function → aggregate edge features w/ a symmetric func.

Y. Wang et

al.

- Update Graph (ie Dynamic Graph CNN, DGCNN): Using kNN in the feature space produced after EdgeConv
 - Can be viewed as a mapping from one particle cloud to another

ParticleNet for jet tagging (II)

H. Qu and LG

PRD 101 056019 (2020)

- Based on EdgeConv and DGCNN
 - but customized for the jet tagging task

ParticleNet in FCCSW

Sample Generation for training

- Generation of the samples in EDM4hep (whole event reconstructions, features for training not explicit)
- FCCAnalyses (wrapper RDataFrame)
 - Per-event \rightarrow per-jet structure
 - 2 stages. 1: read edm4hep and extract features. 2: produce n-tuples one per class.
 - final dataset: 5/7 classes and 10⁶ events per class
 - trained on gpus (A100)

Inference

- Inference in FCCAnalyses:
 - load ONNX training files
 - Extract hard vertex and perform jet clustering
 - Extract jet constituents and compute observables
 - Evaluate NN → output: **one probability per category**

Inference

JetClusteringHelper

JetFlavourHelper

get local file, else download from url weaver_preproc = get_file_path(url_preproc, local_preproc) weaver_model = get_file_path(url_model, local_model) from addons.ONNXRuntime.python.jetFlavourHelper import JetFlavourHelper from addons.FastJet.python.jetClusteringHelper import ExclusiveJetClusteringHelper ## define jet clustering parameters jetClusteringHelper = ExclusiveJetClusteringHelper(collections["PFParticles"], njets, tag) ## run jet clustering df = jetClusteringHelper.define(df) ## define jet flavour tagging parameters jetFlavourHelper = JetFlavourHelper(collections, jetClusteringHelper.jets, jetClusteringHelper.constituents, tag,) ## define observables for tagger df = jetFlavourHelper.define(df) ## tagger inference df = jetFlavourHelper.inference(weaver_preproc, weaver_model, df) return df

Loading model parameters

Jet clustering

Obtain input parameters

Run inference

ParticleNet@FCCee: b/c tagging

ParticleNet@FCCee: s/g tagging

WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	20%	40%	10%	1%
Medium	80%	9%	20%	6%	0.4%

WP	Eff (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	25%	7%	2.5%
Medium	80%	15%	5%	2%

Impact of detector configurations

Strange tagging [PID]

- dN/dx brings most of the gain additional gain w/ TOF (30ps)
 - TOF (3ps): marginal improvement
 - dN/dX + TOF(30ps) ~ perfect PID

- Additional pixel layer 1 cm from beam pipe vs 1.5 cm:
 - improved BKG rejection in c-tagging
 - marginal/no improvement in b-tagging

Pushing the limits further

Use the k-nearest particles [k=8 for ParticleNet-EE]

- Fully connected graph
- Include per-particle-pair properties more directly

Robustness

- ParticleNet-ee trained using *Pythia 8* samples
 - tested on **Pythia 8** [solid lines]
 - tested on WZ-Pythia6 [dashed lines]

- Modest dependence on choice of generator
- More parton showers coming up (Herwig, Sherpa...)

Extension

- ParticleNet-ee trained 7 classes
 - 5 classes, B, C, S, G, Q [solid lines]
 - 7 classes, B, C, S, G, U, D, TAU [dashed lines]

Up -tagging

- Up vs Down discrimination seems possible thanks to jet charge
- 30% bkg eff at 50% signal (better than random coin toss)

Summary

- Powerful jet flavour identification important for the e⁺e⁻ physics program
- Sophisticated jet tagging algorithms developed for e⁺e⁻ experiments
 - Striking improvement in tagging performance compared to previous tools
 - allows us to explore more of the detector and event reconstruction potential
 - Integrated in FCCSW [data preparation, training, validation, inference, analysis] and used in FCCee physics analyses
- Developments in ML will give insights (Rate distortion method, layer wise relevance propagation method (LRP))
- Still room for improvement / other ideas to try:
 - secondary tasks, secondary vertexing regression
 - New higher order graph architectures

