Latest reference on Muon Colliders: arXiv:2303.08533

Tracking Using ACTS For Muon Collider Detector

Karol Krizka

July 11, 2023

MInternational UON Collider Collaboration

ECFA Obj Reco

Beam Induced Background

- BIB = muon beam decay and strike the detector
- Several main mitigation
 - 10° tungsten nozzle to shield from beam decay products

dN/dt

107

10⁶

μ beam, √s = 1.5 TeV

– e[:] – n

Muon Collider

Simulation

The Scale of BIB

	ITk Hit Density [mm ⁻²]	MCC Equiv. Hit Density [mm ⁻²]
Pix Lay 0	0.643	3.68
Pix Lay 1	0.022	0.51
Str Lay 1	0.003	0.03

ITk Pixels TDR, ITk Strips TDR

Hit density after timing cuts 10x HL-LHC

All-Silicon Tracking Detector Details

Software Stack

https://github.com/MuonColliderSoft/

• Original software based on iLCSoft.

• Many packages forked and modified .

• Ongoing migration to Key4HEP (details).

- Centrally supported software for turnkey HEP with many users.
- Still using iLCSoft processors (backwards compatibility in key4hep).
- Package management done via Spack.
- Tutorial: https://mcdwiki.docs.cern.ch/

A Common Tracking Software

- ACTS is a standalone library for tracking algorithms
- Dedicated team working on advancing tracking algorithms
 - Tracking is hard!
- Allows us explore alternate algorithms
 - Triplet-based seeding optimized for high multiplicity environments

Kalman Filter

0.5 ms / track

100 ms / track

Execution Time

• Ongoing work to incorporate ML-based algorithms

• Code optimization come for free

- Good software is even harder than tracking!
- Also explores modern computing architectures (ie: GPU's)

Fit Library

ACTS

iLCsoft

https://github.com/acts-project/acts

July 11, 2023

ACTS Versions

• ACTS v13.0.0: Latest when IMCC implemented ACTS tracking.

• ACTS v27.1.0: Latest today.

- Improved material map tuning and validation.
- CKF settings auto-tuning is now part of their tools.
- Support for 4D tracking (TBC).
- GraphNet-based pattern recognition.

Why are you so far behind?

• ACTS keeps breaking API every release... hard to keep up.

Triplet Seeded CKF

Similar algorithm used by ATLAS.

aka optimized for high hit multiplicity

CKF (ACTS) Tracking Performance

- Seeded CKF runs in ~4 min / event.
- Parameters need to be optimized.
 - Seeding: very narrow collision region
 - CKF: No branching allowed

Details

Fake track removal (optimized with evolutionary algorithms)

Eff WP	Fakes / event
90%	3900
80%	0.13
70%	0.06

ACTS Components

• Core library

- The core track EDM and reconstruction classes as a library
- To be used by *experiments* inside their *framework*.

• Plugin libraries

• Optional libraries that supplement the core library.

Applications

- Fast simulation, running algorithms, material map, auto-tuning...
- Your detector can be loaded if supported via official plugin.

Detector Geometry Descriptions

ACTS supports several ways to load detector geometry.

- Manually describe the geometry
 - Very tedious for a real detector
 - Duplicates work from simulation detector description
- DD4hep plugin
 - Can load existing description for detectors that use DD4hep
 - Need a specific detector tree structure to extract logical information
- ROOT's TGeo plugin
 - Common, but simple, format (ie: DD4hep can export to TGeo)
 - Logical information is extracted from geometry
 - Slow (enable compiler optimizations)

July 11, 2023

Two Tracking Detector Geometries

1) Loading geometry for geantino scan to determine material.

- Load using DD4hep ACTS plugin.
- Includes all the details on supporting structures.
- Geantino scan can be performed using ACTS tools.

* separation into components is manual.

July 11, 2023

2)Loading geometry to determine sensitive layers for tracks.

- Load using TGeo ACTS plugin.
- A lot of manual work (and validation) required
 - Need to specify bounding boxes for layers.
 - Need to create a static map from sim detector ID to ACTS detector ID
 - Validation can be partially performed using ACTS tools.

Material Map

ACTS caches the detector material as a histogram.

• Three step approach to create the material map:

1)Run a geantino scan to determine material (ACTS tool).

2) Run a bunch of ACTS scripts to create the map.

- Blindly using defaults for most settings (ie: bin sizes).
 3)Validate (ACTS tools)
- Plenty of documentation
 - Generic ACTS documentation.
 - Muon Collider Detector specific instructions.
- Rather annoying to run due to TGeo.
 - Makes detector layout studies tedious.

Tracking Using Marlin

- ACTS as a library to create a generic Marlin processor
 - Pass LCIO objects. Drop-in for existing tracking processors.

• Key steps to code:

- Geometry loading*.
- LCIO \rightarrow ACTS hit objects.
- Running of algorithms*.
- ACTS \rightarrow LCIO track objects.

* Copy-paste code from ACTS applications.

https://github.com/MuonColliderSoft/ACTSTracking

TrackPerf: Package for Common Tracking Plots

• Common way to compare the different tracking approaches

- Started a new package TrackPerf (unreleased)
- Functionality
 - Input: EVENT::Track collection
 - Output: all the histogram you would want
 - Parameters of truth particles matched/not-matched/all
 - Parameters of tracks matched/not-matched/all
 - Resolution plots of all parameters
 - Configurable selection on truth particles
 - Default: charged, decay in tracker, left tracker
 - Option to filter for particles from b-meson decay (TODO)
 - ROOT Ttree for custom studies (TODO)

Missing plotting scripts!

July 11, 2023

Tracking Core TODO

• Update to latest version of ACTS.

• Just too far behind now.

• Run CKF in both directions and merge tracks.

• Currently missing the inner most layer as we only go "inside-out".

• Extrapolate tracks to calorimeter.

• Needed for particle flow. Currently refit using "slow" iLCSoft tracking.

• Convert DD4hep geometry tree to follow ACTS assumptions.

• Easier material maps. Can use ACTS tools. Faster geometry loading.

• Port to key4hep...

• Very interested in collaborating! No reason to be detector specific.

Tracking using ACTS is awesome.

- Easy*: *Basics* implemented by following ACTS examples.
- Fast: Same algorithms are orders of magnitude faster than iLCSoft.
- Works: See plots above. Also being used in other experiments.

A few downsides...

- API breaks every release. Needs work to keep up.
- * Easy = once you know how it works.

Interested in a common key4hep ACTS processor.

BACKUP

Rejecting Fakes

Details

- 100k fake tracks / event
- reduce to < 1 fake / event
- Still missing a few handles
 - χ^2 , N_{holes}, timing
- Implemented as an (unreleased) processor

Efficiencies

