ECFA Higgs Factories: 2nd Topical Meeting on Reconstruction

Reconstruction Needs for LLP

Juliette Alimena, Rebeca González, Jan Hajer, Marcin Kucharczyk, Emma Torró, Sarah Louise Williams, Filip Zarnecki

Introduction

- Standard Model (SM): very successful theory
- Precise predictions, verified by experiment with impressive agreement with theory across orders of magnitude
- Cannot be the ultimate theory
- Several open questions in HEP
- What is Dark Matter?
- Neutrinos have a mass $\neq 0$
- Why is the Higgs so light? Hierarchy problem
- Matter and antimatter are not symmetric

. . .

Introduction

Motivation

New physics could have long lifetimes Signatures not visible in standard HEP searches!!

Naturalness

Dark Matter

Baryogenesis

Neutrino Masses

E. Torró ECFA Reconstruction WS July 2023

Curtin et al, 1806.07396

Top-down Theory

How can we look for LLPs in collider experiments?

That depends on:

LLP lifetime

Standard HEP detector structure

Figure by H. Russell

ECFA Reconstruction WS E. Torró July 2023 distance travelled

How can we look for LLPs in collider experiments?

That depends on:

LLP lifetime object identification LLP nature

- Is it charged?
 - Does it leave a standard track?
 - Is it highly ionising?
- Is it neutral?
 - which decay mode (hadronic, leptonic, photons, invisible)?

None of these signatures would be "seen" by a standard HEP search!

E. Torró ECFA Reconstruction WS July 2023

How can we look for LLPs in collider experiments?

[GeV/c²]

10-

That depends on:

LLP lifetime

LLP nature

object identification

Small or unusual backgrounds play a key role:

- Need very good background identification
- For most of them, no good simulations
 - All searches rely on data-driven methods

E. Torró ECFA Reconstruction WS July 2023 **Background rejection**

SM particles with relatively long lifetime

material interactions

LLP lifetime

LLP nature

object identification

Reconstruction studies on specific signatures

E. Torró ECFA Reconstruction WS July 2023

Background rejection

Tracks with large impact parameters

LLP

dO

ΡV

DV

ATLAS Micro-displaced muons

- Search for pairs of opposite charge muons with O(mm) impact parameter
- GMBS SUSY with nearly massless gravitino LSP and long-lived slepton (τ , e, μ NLSP) due to small coupling to the LSP
- Signal Regions defined with large transverse impact parameter |d0| > 0.6 mm
- Dominant SM background: semileptonic *B*-hadron decays, $bb \rightarrow \mu \mu$
 - |d0| > 0.1 mm to reduce SM processes

E. Torró ECFA Reconstruction WS July 2023

ANA-SUSY-2020-09

$\widetilde{\mu} \ \widetilde{\mu} \rightarrow \mu \ \widetilde{G} \ \mu \ \widetilde{G}$

Tracks with large impact parameters

Studies at ILD

- Default cuts in track reco: d0, z0 < 500 mm
 - Strongly suppresses reconstruction of LLPs in the inner tracker!
 - Removal (or loosening) of impact parameter cuts: great efficiency recovery

• Default d0, z0 cuts

As a challenging case (small boost, low-pT final state) we considered: \rightarrow (tuned) Inert Doublet Model sample with small mass splitting,

Long-lived, with $c\tau = 1 \,\mathrm{m}$ $m_A - m_H = 1, 2, 3, 5 \,\mathrm{GeV}$

No d0, z0 cuts

 $\Delta m_{AH} = 1 \,\mathrm{GeV}$ From Jan Klamka 9

LLP

Tracks with large impact parameters

Studies at ILD

- Inverted tracks:
- Tracks from very soft particles often reconstructed in the wrong direction
 - Reco as opposite charge particles!!

Ρz Px Py 0.113 -0.339 0.061 MC: -0.103 0.344 -0.062 Reco:

Solution: if PZ does not point into Z coordinate of the first (last) hit, switch direction of the last (first) hit

Improves efficiency by ~ 10%

As a challenging case (small boost, low-pT final state) we considered: \rightarrow (tuned) Inert Doublet Model sample with small mass splitting, $Z^* \rightarrow \mu \mu$

From Jan Klamka 10

ATLAS

- Standard tracking in ATLAS optimized for prompt particles:
 - point back to the interaction point
 - tight requirements in number of silicon hits and impact parameter
 - would reject tracks from displaced decays

E. Torró ECFA Reconstruction WS July 2023

ATLAS

- Standard tracking in ATLAS optimized for prompt particles:
 - point back to the interaction point
 - tight requirements in number of silicon hits and impact parameter
 - would reject tracks from displaced decays
- Large radius tracking (LRT)
 - Re-run with hits not associated with existing tracks
 - Relax requirements in number of silicon hits and d0

ATLAS

- Standard tracking in ATLAS optimized for prompt particles:
 - point back to the interaction point
 - tight requirements in number of silicon hits and impact parameter
 - would reject tracks from displaced decays
- Large radius tracking (LRT)
 - Re-run with hits not associated with existing tracks
 - Relax requirements in number of silicon hits and d0
 - targets tracks with displacements up to 300 mm

IDTR-2021-03

Studies at FCC-ee

- Proposed detector designs for FCC-ee:
 - CLD design

- IDEA design
- Noble Liquid ECAL Base design
- Opportunities for new creative detectors, e.g. designed for LLP search such as HECATE (arXiv:2011.01005)
- The IDEA detector is used in this study:
 - Silicon pixel vertex detector
 - Ultralight drift chamber (DCH)
 - Dual readout (DR) calorimeter
- The detector simulation of IDEA is done in DELPHES with a fast parametric simulation

Studies at FCC-ee

 Using current tools in the FCCAnalyses framework adapted to the ZHss model Extra constraints and functions inspired by ATLAS DV reconstruction

Secondary vertex finder (arXiv:1506.08371)

- Designed for ILC/CLIC and primarily used for flavour-tagging jets
- Added track selection: non-primary, pT > 1 GeV and Id0I > 2 mm
- Added and tested vertex merging (in progress)

Details in talk at the ECFA WG1-SRCH meeting

FCCAnalyses: FCC-ee Simulation (Delphes)

Studies at ILD

- Missing hits in TPC
- Single track can often be reconstructed as several tracks
- Becomes more important if we look for vertices far from the IP

This track was reconstructed as two separate ones, with very distante reference points

From Jan Klamka 16

Studies at ILD

The opposite extreme case, (large boost, high-pT final state) \rightarrow (tuned) axion-like particle model sample

- Collinear tracks in TPC (ALPs)
- Impossible to distinguish the tracks close to the production vertex

- Tracking often assigns first hit of the second track far from the vertex (Small influence on reco. momentum)
- Need to carefully evaluate the hits distribution

 $c\tau = 1 \,\mathrm{m}$

From Jan Klamka 17

Full analysis using Displaced vertices

ATLAS

- Long-lived particles decaying into hadrons in the ATLAS inner detector
- SM (MSSM) *R*-parity-violating (RPV)
 - mean proper lifetimes τ up to O(10) ns
- Using LRT in events with multiple energetic jets and a displaced vertex
- Three main sources of background:
 - hadronic interactions: detector material
 - accidental crossings: low-mass displaced vertices crossed by an unrelated track
 - merged vertices: close-by low-mass displaced vertices
- Reject them with DV selection:
 - DV at least 4 mm away from any collision vertex
 - DVs must satisfy a material map veto
 - DVs must have at least five tracks
 - *m*DV > 10 GeV
- Reach ~zero background analysis

x_{DV} [mm]

Full analysis using Displaced vertices

Studies at FCC-ee

• Preliminary vertex selection:

- Distance of DV from PV required to be
 - in the tracker volumen
 - outside the innermost region to exclude heavy-flavour decays
- Charged invariant mass at DV: to remove background DVs

Type	Parameter	Value
Track Selection	Min p_T	1 GeV
	Min $ d_0 $	$2 \mathrm{mm}$
Vertex Reconstruction	V^0 rejection	True
	$\operatorname{Max} \chi^2$	9
	$Max \ M_{inv}$	40 GeV
	Max χ^2 added track	5
	Vertex merging	False
Vertex Selection	Min r_{DV-PV}	4 mm
	Max r_{DV-PV}	2000 m
	Min $M_{charged}$	$1 \mathrm{GeV}$

FCCAnalyses: FCC-ee Simulation (Delphes)

avour decays und DVs

Visible/charged invariant mass at the DVs

From Magdalena Vande Voorde, Giulia Ripellino

nm

19

Full analysis using Displaced vertices

Studies at FCC-ee

• First steps for a sensitivity study

- Z Pre-selection: 2 SFOS leptons with invariant mass 70 < mll < 110 GeV
- At least 2 reconstructed DV
- Given zero-background, signal points with at least 3 expected events can be excluded to 95% CL
- Potential sensitivity for all signal samples except for the shortest and longest lifetime samples!

FCCAnalyses: FCC-ee Simulation (Delphes)

√s = 240.0 GeV $10^2 = L = 5 ab^{-1}$ $e^+e^- \rightarrow Z h, Z \rightarrow l^+l^-, h \rightarrow ss \rightarrow b \ \overline{b} b \ \overline{b}$ Before selection - m_s = 20 GeV, sin θ = 1e-5 10^{-1} 100 110 80 90 120 140 150 Invariant mass of reconstructed μ - μ + [GeV] ~ 0

Conclusions $L = 5 ab^{-1}$

- $\sqrt{s} = 240 \; GeV$
- LLPs might^{eb} the key for finding BSM physic⁺ and they are gaining interest!
- Great effort at the LHC experiments to search for LLPs... BUT!
- Lots of effort ongoing, a lot more to come

$b \overline{a} r b^{\overline{s}} \rightarrow b \overline{b} b \overline{b}$

E. Torró ECFA Reconstruction WS July 2023

CIRCULAR IDEA detector layout

Beam pipe: R~1.5 cm	[m]
Vertex:	5
5 MAPS layers	
R = 1.7-34 cm	4
Drift Chamber: 112 layers	4
4 m long, R = 35-200 cm	3
Outer Silicon wrapper :	3
Si strips	2
Superconducting solenoid coil:	2
2 T, R ~ 2.1-2.4 m	
0.74 X ₀ , 0.16 λ @ 90°	1.
Preshower : $\sim 1 X_0$	1.
Dual-Readout Calorimeter: $2m / 7 \lambda_{int}$	0.
Yoke + Muon chambers	

LLPs @ FCC-hh, FCC-ee

HECATE: HErmetic CAvern TrackER. A long-lived particle detector concept for FCC-ee or CEPC

- For FCC-hh / FCC-ee, main detector will be relatively smaller than the cavern
- Cover detector cavern walls with scintillator plates or RPCs
 - >= 2 layers of 1 m² separated by a sizeable distance timing
 - >= 4 layers for good tracking
 - 4π coverage LLP detector
- FCC main detector as active veto
- Sensitive to a unique area of phase space

• Example: HNLs

 U^2 10^{-8} 10^{-9} THUNDERDOME: Totally Hyper-UNrealistic 10^{-10} DEtectoR in a huge DOME (maximum distance from IP=100m for comparison) 10^{-11}

 10^{-5}

 10^{-6}

 10^{-7}

Proposal: <u>2011.01005</u>

- Cavern size: r~15 m and z~50 m
- Main detector size =(10m)

Different inner tracker layouts: ILD and CLICdp In real and conformal space

DESY.

From Shaojun Lu, Frank Gaede: gaede ILD tracking performance.pdf

Studies at ILD

Missing hits in TPC

- Particles travelling alongside the boundaries generate no hits
- Long distance between first hit and true vertex leads to wrong track parameters!

Virtual volumes in the TPC

TPC SimTrackerHits

From Jan Klamka Z

Exotic Higgs decays to LLPs at FCC-ee

- The Higgs boson can have sizeable couplings to new particles \rightarrow exotic Higgs decays
- Our considered model: SM + scalar (<u>arXiv:1312.4992</u>, <u>arXiv:1412.0018</u>)
- The SM Higgs boson (h) and the scalar (s) mix, governed by the mixing angle sin θ
 - For sufficiently small mixing, the scalar can be long-lived, $c\tau \sim$ meters if $\theta < 1e-6$
- Higgs produced at ZH-stage of FCC-ee with $\sqrt{s} = 240~GeV$
- For plots in these slides $L = 5 ab^{-1}$ (total integrated luminosity considering the old baseline of 2 IPs)
- boson reconstructed from the lepton pair

- Considered model parameters:
 - $m_s = 20 \text{ GeV}$ and $m_s = 60 \text{ GeV}$
 - $\sin \theta = 1e-5, 1e-6, 1e-7,$ corresponding to mean proper lifetimes $c\tau$ of O(1 mm – 10 m)

• Signal process: $e^+e^- \rightarrow Zh$ with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ and $h \rightarrow ss \rightarrow b\bar{b}b\bar{b}$, probed in events with 2 displaced vertices (DVs) and Z-

The Future Circular Collider (FCC)

- A proposed future accelerator at CERN
- Operate in two stages with physics complementarity:
 - Precision with FCC-ee: e^+e^- collisions at four energy stages, i.e an EW, Higgs and top factory at high luminosities
 - Discovery with **FCC-hh**: an energy frontier with \bullet hadron collisions at \geq 100 TeV
- FCC-ee also offers good opportunities for LLP searches!
 - Clean experimental signatures
 - No trigger limitations
 - High luminosity

LHC/LEP: 27 km 91-209 GeV (e^+e^- collisions) 14 TeV (pp collisions)

FCC: 90-100 km 91-365 GeV (e^+e^- collisions) 100 TeV (pp collisions)

From Magdalena Vande Voorde, Giulia Ripellino

8

Exotic Higgs decays to LLPs at FCC-ee

- The Higgs boson can have sizeable couplings to new particles \rightarrow exotic Higgs decays
- Our considered model: SM + scalar (<u>arXiv:1312.4992</u>, <u>arXiv:1412.0018</u>)
- There are 3 important free parameters determining the phenomenology:
 - The Higgs-scalar coupling κ, determining the branching ratio of the scalar pair production
 - The mass of the scalar $m_{S'}$ determining the possible final states of the scalar
 - The mixing angle sin θ , from mixing between the Higgs boson and the scalar
 - For sufficiently small mixing, the scalar can be long-lived
 - $c\tau \sim meters if \theta < 1e-6 \rightarrow LLP signature$
- Higgs produced at ZH-stage of FCC-ee with $\sqrt{s} = 240~Ge$
- Signal process: $e^+e^- \rightarrow Z h$ with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$

к: the Higgs-scalar coupling

E. Torró ECFA Reconstruction WS July 2023

$$\mathcal{L}_{SM} \ni \underbrace{\frac{1}{2} \mu_S^2 S^2 - \frac{1}{4!} \lambda_s S^4}_{\text{scalar potential}} - \underbrace{\frac{1}{2} \kappa S^2 |H|^2}_{\text{portal term}} + \underbrace{\mu^2 |H|^2 - \lambda |H|^4}_{\text{Higgs potential}}$$

$$eV$$

$$\text{and } h \rightarrow ss \rightarrow b\bar{b}b\bar{b}$$

Simulation of the signal

- Generated signal samples: $e^+e^- \rightarrow Z h, Z \rightarrow e^+e^-$ or $\mu^+\mu^-, h \rightarrow ss \rightarrow b\bar{b}b\bar{b}$
 - Privately produced using MadGraph v3.4.1 + Pythia8 + DELPHES (fast simulation)
 - With the MadGraph5 HAHM (<u>arXiv:1312.4992</u>, <u>arXiv:1412.0018</u>) and the spring2021 IDEA DELPHES card
- Parameters:
 - $\sqrt{s} = 240 \ GeV$ and $L = 5 \ ab^{-1}$ (total integrated luminosity considering the old baseline of 2 Interaction Points)
 - $m_s = 20 \text{ GeV}$ and $m_s = 60 \text{ GeV}$
 - $\sin \theta = 1e-5$, 1e-6, 1e-7, corresponding to mean proper lifetimes $c\tau$ of O(1 mm 10 m)

• *κ* = 1e-3

E. Torró **ECFA Reconstruction WS July 2023**

Displaced Vertex reconstruction

- for flavour-tagging jets (see more in <u>backup</u>)
- - (σ = error of vertex position) or 1 mm
 - combine and rerun the vertexfitter

Invariant mass at the DVs

FCCAnalyses: FCC-ee Simulation (Delphes)

- Usually a good discriminating variable between a DV from an LLP and a fake vertex
- fragmentation \rightarrow expected peak around half of the particle's mass
- More of a structure around higher masses for the merged vertices but no clear peaks \bullet
- ullet

FCCAnalyses: FCC-ee Simulation (Delphes)

Invariant mass at vertex calculated assuming all tracks to come from pions, this only captures the charged component of the jet

Tradeoff between goodness-of-fit and invariant mass \rightarrow no vertex merging at this stage, more truth studies needed! 15

Distance from PV to the DVs

- Usually a good discriminating variable between signal and SM background
- The reconstructed quantity nicely follows the generated quantity
- $m_s = 60 \text{ GeV}$, sin $\theta = 1e-5$ is too short lived to be properly reconstructed with the DV algorithm
- $m_s = 20 \text{ GeV}$, sin $\theta = 1e-7$ might be too long-lived to have enough DVs within DCH (the tracker volume)

ECFA Reconstruction WS E. Torró July 2023

```
• m_s = 20 GeV, sin \theta = 1e-5, m_s = 20 GeV, sin \theta = 1e-6, m_s = 60 GeV, sin \theta = 1e-7 and m_s = 60 GeV, sin \theta = 1e-6 good for the analysis!
```


FCCAnalyses: FCC-ee Simulation (Delphes)

16

Vertex reconstruction, further reading

- More details in thesis: <u>DiVA</u>
- LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies: arXiv:1506.08371
- FCCAnalyses framework vertex reconstruction: <u>GitHub</u>

17

Charged LLPs Large dE/dx

- Pair production of several different long-lived sparticles of charge |q| = 1
 - isolated tracks with high transverse momenta (pT) and anomalously large specific ionisation losses (dE/dx)
 - particles are expected to move significantly slower than the speed of light
 - Use MET triggers
 - Fully data-driven background estimation!

E. Torró ECFA Reconstruction WS July 2023

<u>SUSY-2018-42</u> <u>2205.06013</u>

High pT track with large dE/dx

Charged LLPs Large dE/dx

- Pair production of several different long-lived sparticles of charge |q| = 1
 - isolated tracks with high transverse momenta (pT) and anomalously large specific ionisation losses (dE/dx)
 - particles are expected to move significantly slower than the speed of light
 - Use MET triggers
 - Fully data-driven background estimation!

Target	Mass	egion bin							
mass	window	SR-Inclusive_High							
[GeV]	[GeV]	Exp.	Obs.	p 0	Zlocal	S ⁹⁵ _{exp.}	$S_{obs.}^{95}$		
ifetime									
200	[120, 225]	5.6 ± 0.7	7	2.65×10^{-1}	0.6	$6.3^{+2.5}_{-1.7}$	7.8		
300	[200, 350]	9.2 ± 0.8	14	7.11×10^{-2}	1.5	$7.6^{+3.0}_{-2.1}$	12.5		
400	[300, 500]	5.8 ± 0.4	6	4.39×10^{-1}	0.1	$6.1^{+2.5}_{-1.8}$	6.5		
450	[350, 600]	5.1 ± 0.4	3	5.00×10^{-1}	0.0	$6.0^{+2.2}_{-1.6}$	4.6		
500	[400, 700]	4.3 ± 0.4	4	5.00×10^{-1}	0.0	$5.4^{+2.2}_{-1.3}$	5.2		
550	[400, 800]	4.8 ± 0.4	4	5.00×10^{-1}	0.0	$5.8^{+2.5}_{-1.8}$	5.4		
600	[450, 900]	3.91 ± 0.31	2	5.00×10^{-1}	0.0	$5.5^{+2.2}_{-1.6}$	4.0		
650	[500, 1000]	3.22 ± 0.31	2	5.00×10^{-1}	0.0	$5.2^{+1.9}_{-1.6}$	4.4		
700	[550, 1100]	2.64 ± 0.31	2	5.00×10^{-1}	0.0	$4.7^{+1.9}_{-1.0}$	4.3		
800	[600, 1200]	2.22 ± 0.24	3	2.86×10^{-1}	0.6	$4.5^{+1.8}_{-1.0}$	5.5		
900	[650, 1400]	2.0 ± 0.3	4	9.74×10^{-2}	1.3	$4.3^{+1.6}_{-0.9}$	6.8		
1000	[700, 1850]	1.9 ± 0.5	4	9.01×10^{-2}	1.3	$4.1^{+1.9}_{-0.7}$	7.0		
1200	[800, 2400]	1.5 ± 0.7	6	9.10×10^{-3}	2.4	$4.0^{+1.6}_{-0.8}$	10.0		
1400	[900, 2900]	1.1 ± 0.7	7	2.08×10^{-3}	2.9	$4.0^{+1.4}_{-0.7}$	11.5		
1600	[1000, 3450]	0.9 ± 0.5	7	6.03×10^{-4}	3.2	$3.6^{+1.5}_{-0.5}$	11.8		
1800	[1100, 4000]	0.8 ± 0.6	7	8.87×10^{-4}	3.1	$3.5^{+1.1}_{-0.2}$	11.9		
2000	[1200, 4600]	0.6 ± 0.5	5	4.92×10^{-3}	2.6	$3.1^{+1.1}_{-0.1}$	9.4		
ECFA Reconstruction WS July 2023									

E. Torró

3.6σ excess!!

Is this New Physics??? Maybe, though... from the TOF of these events indicate that none of the candidate tracks are from charged particles moving significantly slower than the speed of light 😕

CMS doing a similar analysis Analysis will be repeated in Run 3!

Multicharged particles

- Search for heavy long-lived multi-charged particles (MCP) with high ionization (higher electric charges and lower velocities)
 - mass range from 500 to 2000 GeV with electric charges from |q| = 2e to |q| = 7e
 - live long enough to traverse the entire ATLAS detector

- Triggers: Muon, MET, late-muon trigger
- Select high-*p*T muon-like tracks with high dE/dx values in several subdetector systems: pixel ID, TRT, MDT
 - significance: comparing dE/dxwith the average value for a highly relativistic muon

/N dN/dS(pixel dE/dx)

Data/MC

10⁻

 10^{-2}

 10^{-3}

10

10⁻⁵

10

 10^{-7}

4 E

2

Multicharged particles

- Background mainly consists of:
 - high-pT muon reconstructed from several muons losing their energy in the same detector elements
 - sporadic-noise
- All background estimated by using a data-driven technique.

E. Torró **ECFA Reconstruction WS** July 2023

 σ [pb]

39