

Software for PED studies

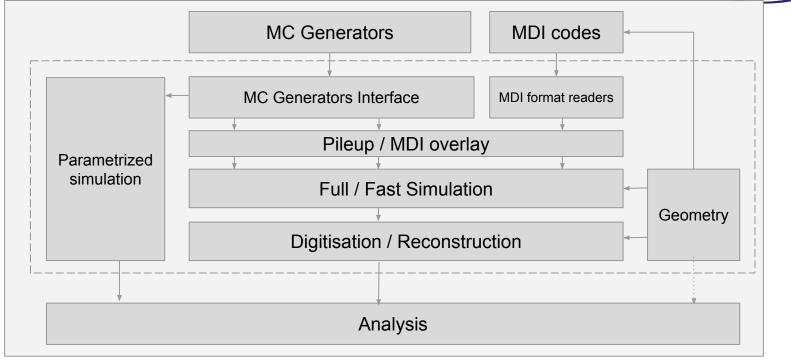
Introduction. Status of Things

FCC Software Meeting CERN, Zoom

May 30, 2023 G Ganis, CERN-EP

Restarting the FCC Software meetings

- General FCC Software meetings were sort of paused during the review of the FCC
 Software and Computing working group mandate
 - Software slots in the Physics Performance and Detector Concepts meetings
- Topical working meetings were organised upon needs
 - This was the case e.g. for analysis tools, IDEA full simulation, ACTS, Pandora, ARC, ...
- The on-going FCC Feasibility Study has triggered a significant increase in the activities and contributions around the FCC software
 - General and inclusive exchange meetings are required to streamline communications
- A monthly frequency was felt adequate to start with
 - Identified in the last Monday at 15h of the month as initial working solution
 - Today exception due to Whit Monday and Memorial Day
- Next meeting: June 26th


Events during the "pause" ...

- 5th FCC Physics workshop, Liverpool virtual, Feb 2022
 - Dedicated software session
- FCC Week 2022, Paris, May 2022
 - Plenary + software talks in Physics Performance
- Kick-off Detector Concepts workshop, June 2022
 - Software session
- Software tutorials, Oct 2022
 - Updated set of tutorials and documentation
- 6th FCC Physics workshop, Krakow, Jan 2023
 - Software session
- 1st FCC US workshop, BNL, Apr 2023
 - Demo/tutorials and update doc

Workflows to support for FSR

Software Infrastructure (Repositories, Build/Test/Deploy)

Workload and Data Management

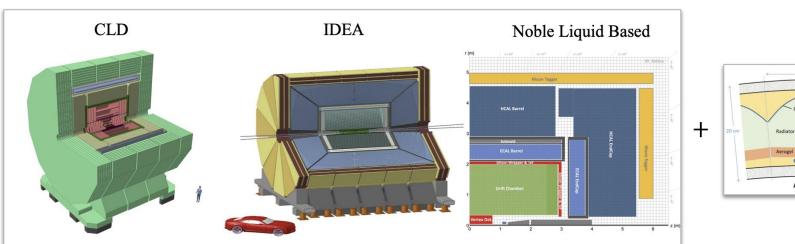
FSR targets

•	Monte Carlo generator and interfaces ○ Generator palette ✓	√≍
	 General treatment of interaction region (BES, x-angle, packet length,) = 	
	MDI interfaces	√≈
	 GuineaPig ✓ 	
	 (SR, beam losses, beamstrahlung) through authors' particle lists ✓= 	
•	Parametrized simulation	···········
	 ○ Delphes integration ✓ 	
•	Geometry description and full simulation	√≈
	○ New machine region elements, CLD, LAr calo, IDEA DR calo ✓	
	 ARC, IDEA DC, vertex, cristal ECAL, muon on-going = 	
	 Streamlining procedure to interchange detectors (Plug&Play) = 	
•	Digitisation	√ =
	 CLD, LAr calo, IDEA DR calo √= 	
	 ARC, IDEA DC, vertex, cristal ECAL, muon 	

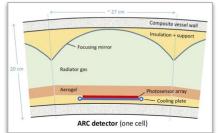
FSR targets

	Reconstruction✓≈
	 CLD via wrapper(iLCSoft tools), LAr calo, IDEA DR calo √
	 O ARC, IDEA DC, vertex, cristal ECAL, muon ≤
	 ACTS, Pandora PFA ≤
•	Distributed computing
	 iLCDirac to be commissioned ≤
•	Analysis✓≈
	 FCCAnalysis consolidation
•	Documentation
	○ Tutorials ✓=
	○ Reference documentation =

Key4HEP / EDM4hep

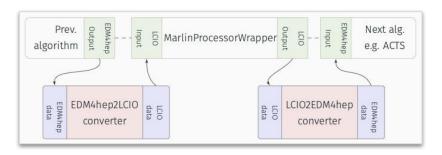


- Rather stable core components
 - Some work going on on the back to prepare for multi-threaded processing
 - Integration of PoDIO::Frames
- On-going activities
 - Core: Streamlining/consolidation of the build system
 - Rebase on latest Spack; CI consolidation; builds for additional OS (Ubuntu, Alma9, ...)
 - Geometry: Enabling of k4geo
 - Common detector-in-DD4HEP repository, copied from lcgeo
 - Provide versioning scheme which will use to bookkeep FCC detector variants
 - Under discussion / definition
 - Full Simulation: Full support for using k4SimGeant4; preparation for k4Gaussino
 - Ironing out differences with ddsim
 - Reconstruction: several activities


k4geo: common repository for detector models

- DD4hep detector models spread in several project repositories
 - <u>iLCSoft/lcgeo</u>, <u>FCCDetectors</u>, <u>CEPCSW/Detector</u>
- <u>k4geo</u> is an attempt to reduce risk of duplications
 - E.g. CLD will only appear in one place
- Current detector concepts for FCC-ee

ARC



Key4hep: reconstruction

1st ECFA workshop on Reconstruction 2nd coming on July 11-12 2023

• CLD: on-going validation of CLICdp algorithms through k4MarlinWrapper

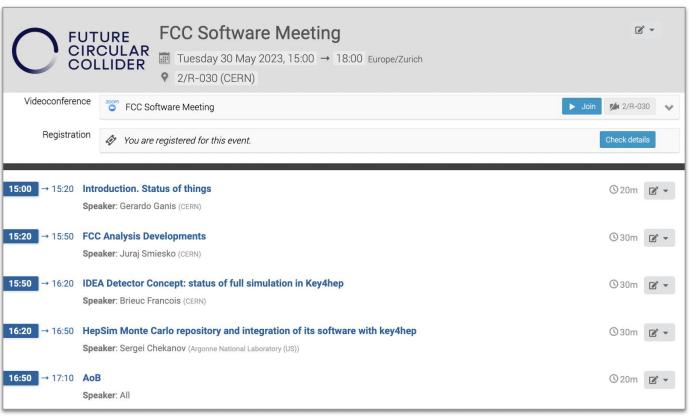
Possibly the area where there is more room for contribution

- Calo reconstruction algorithms in Gaudi
 - LAr, derived form FCC-hh LAr (see tutorial), IDEA Dual Readout
- Particle Flow w/ Pandora PFA: CLD, CLD/LAr
 - o PandoraPFA available through wrapper, native implementation in the pipeline
 - o Improved calo clustering k4CLUE, developed for CMS HGCAL
- Evaluation of ACTS
 - Start w/ CLD, then IDEA DC; look also at what has been done for EIC

Repository/build/test/deploy infrastructure

- Repositories on GitHub
 - Projects key4hep, HEP-FCC
- Managed with Spack
 - Dedicated add-on key4hep-spack
 - CI based on GitHub actions
- Deployed in dedicated CernVM-FS
 - Setup with /cvmfs/sw.hsf.org/key4hep/setup.sh
- Official build are for CentOS7, Gcc 11 (latest: 8 April 2023)
 - Builds for other platforms in preparation
 - In principle works for newer OSes, such as CentOS8, AlmaLinux9 or Fedora37 because of glibc backward compatibility
- Legacy build/deploying infrastructure (extension of LCG builds)
 - Used for quick tests and quick provision of new platforms

Event Producer Workload / Data Management

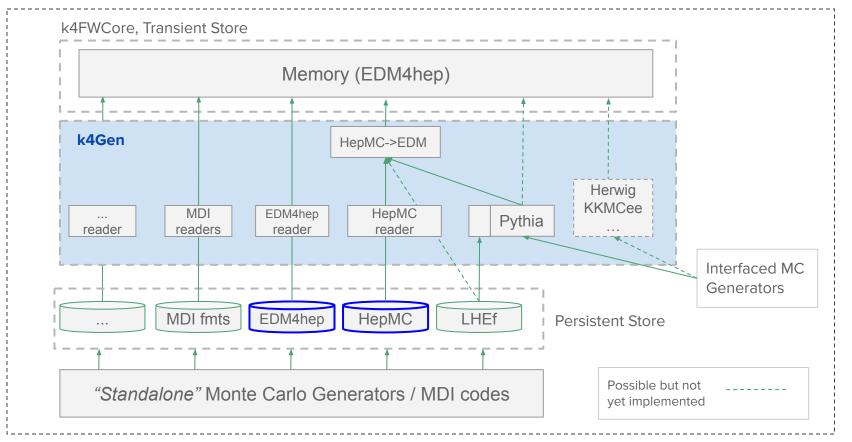

- Currently still using home-made solution (HTCondor, EOS, ...)
 - Serves well CERN-based productions (latest Winter2023)
- Target is still inclusion of non-CERN resources
 - Main requirements: central file catalogue, replication, remote access
 - Major development for the in-house system
- iLCDirac: LC community DIRAC instance
 - Workload management, file catalogue used by LHCb, Belle II, BES III, JUNO, ILC/CLIC, ...
 - Already serving another VO (CALICE)
 - Connected w/ RUCIO (dedicated workshop in Oct 2023)
- FCC @ iLCDirac
 - Re-activated FCC VO
 - Associated CERN FCC resources to FCC VO (HTCondor, EOS area)
 - Re-Activated discussion about FCC workflows

Connections w/

- Key4hep
- Physics Performance

Today's meeting

Software Talks at FCC Week 2023 in London



Backup

Managing interoperability in Gaudi

