

HepSim Monte Carlo repository and integration of its software with key4hep

S.Chekanov (HEP/ANL)

FCC-ee software meeting, CERN

May 30, 2023

What is HepSim?

https://atlaswww.hep.anl.gov/hepsim/

Repository with MC files & software for

- Physics (discovery potential, future precision measurements, etc.)
- Exploration of general aspects of detectors & interactions with material using fast and full Geant4 simulations

Experiment neutral: Can be used for any current & future experiment & phenomenological paper

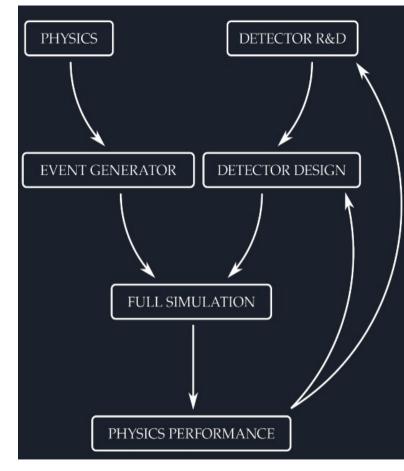
Organize MC samples for download using collision energy, collision type & physics topics

Event samples assigned to Digital Object **Identifiers (DOI)** in the form xx.yyyy/zzzzz (see osti.gov link)

	Get involv	ved Full Sea	ırch	Experiments	Manua	I Mirrors	Tools	About	Login	
				LHC 8 TeV (pp)					
Show all	Цo	HepSim Repository with Monte			.HC 13 TeV (pp) HL-LHC (pp) HE-LHC (pp) FCC-ee (e+e-)					
	-									
$p \rightarrow \leftarrow p$	Reposit									
8 TeV	Show 2	Show 25 🗸 entries								
13 TeV					h (pp)					
14 TeV	Id 🔺	$\rightarrow \leftarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	E	SppC (pp)	_	Dataset	name		\$	Generator
27 TeV	362	pgun	0.0	CEPC (e+e-)	ngl	edualcryst	al2		F	ARTICLE GUN
33 TeV	361	pgun		CLIC (e+e-)	ngl	edualcryst	al		F	ARTICLE GUN
100 TeV	360	pgun	0.0	TESLA (e+e-)	Jal	testbeam			F	ARTICLE GUN
e ⁺ →←e [—]	358	mu+mu-	0.2	ILC (e+e-)	nu	mu_pythia	8 higa	s bhar		YTHIA8
			0.2	Marca collision						
240 GeV	357	mu+mu-		HERA (ep)	nu	mu_pythia		ZZ		PYTHIA8
250 GeV	356	e+e-	0.2	EIC (ep)	e_	pythia8_w	w_zz		F	YTHIA8
380 GeV	355	e+e-	2.4	gev	z -roc e_	pythia8_h	iggs_bb	bar	F	YTHIA8
500 GeV	354	e+e-	0.3	8 gev	380ee_	pythia8_w	w_zz		F	YTHIA8
1 TeV	353	e+e-	0.3	8 gev	380ee_	pythia8_h	iggs_bb	bar	F	YTHIA8
3 TeV	352	рр	13	tev	13pp m	ng5_compl	H mZm	L	N	1ADGRAPH/PY8
	351		13			ythia8_wz				YTHIA8
$\mu^+ \rightarrow \leftarrow \mu^-$		рр				. –		_em		
250 GeV	350	рр	13	tev	13pp_p	ythia8_ttb	ar_em		F	YTHIA8
1 TeV	349	рр	13	tev	13pp_n	ng5_pythia	8_wkki	radW	F	YTHIA8
5 TeV	348	рр	27	tev	27pp_p	ythia8_wp	rimezpi	rime	F	YTHIA8
10 TeV	346	рр	13	tev	13pp_p	ythia8_qco	l_2lep		F	YTHIA8
20 TeV	345	рр	13	tev	13pp_m	ng5py8_gk	k2radio	n2gg	N	1ADGRAPH/PY8
40 TeV	344	pp	13	tev	13pp_p	vthia8 gkl	(2radio	n2aa	F	YTHIA8
				1.6. V		Contract City	- nunu			

What is HepSim?

https://atlaswww.hep.anl.gov/hepsim/


- Consists of a <u>web interface</u>, distributed web storage, <u>command-line tools</u>, <u>event browser</u>, containerized software (docker/singularity image)
- Began at Snowmass DPF 2013 (Top/Higgs, see URL) and evolved to →
- Since 2015 used for physics and detector studies for future experiments (HL-LHC, HE-LHC, FCC, CLIC, CEPC, EIC, etc.) and several ATLAS/LHC papers
- 360 truth-level samples:
 - ~20% converted to Delphes ROOT files
 - ~5% with Geant4 simulation/reconstruction

-0	Get involv	ved Full Sea	arch	Experiments	Manual	Mirrors	Tools	About	Login	
•				LHC 8 TeV (pp)					
iow all	Цo	pSi	n	LHC 13 TeV (p	p)					
		•		HL-LHC (pp)		or portio	lo như	lee		
→← p	Reposit	tory with M	HE-LHC (pp)	15 1	is for particle physics					
eV	Show 2	Show 25 🗸 entries								
TeV				FCC-hh (pp)						
TeV	Id 🔺	$\rightarrow \leftarrow \Leftrightarrow$	E	SppC (pp)	_	Dataset	name		\$	Generato
TeV	362	pgun	0.0	CEPC (e+e-)	ngle	edualcryst	al2		P	ARTICLE GU
TeV	361	pgun	0.0	CLIC (e+e-)	ngle	edualcryst	al		P	ARTICLE GU
TeV	360	pgun	0.0	TESLA (e+e-)	Jalt	estbeam			P	ARTICLE GU
→ ←e —	358	mu+mu-	0.2	ILC (e+e-)	nur	nu_pythia	8_higg:	s_bbar	P	YTHIA8
GeV	357	mu+mu-	0.2	Muon collider	nur	nu_pythia	8_ww_	zz	P	YTHIA8
GeV	356	e+e-	0.2	HERA (ep)	e_	oythia8_w	w_zz		P	YTHIA8
GeV	355	e+e-	2.4	EIC (ep)	2-10-ee_	oythia8_h	iggs_bb	ar	P	YTHIA8
GeV	354	e+e-	0.3	8 gev	380ee_	oythia8_w	w_zz		P	YTHIA8
eV	353	e+e-	0.3	8 gev	380ee j	oythia8 h	iggs bb	ar	P	YTHIA8
eV	352	рр	13	tev	13pp_m	g5_compl	 mZm	L	N	1ADGRAPH/I
→ <i>←µ</i> −	351	рр	13	tev	13pp_py	rthia8_wz	bosons_	em	P	YTHIA8
GeV	350	рр	13	tev	13pp_py	rthia8_ttb	ar_em		P	YTHIA8
e V	349	рр	13	tevi	13pp_m	g5_pythia	8_wkkr	adW	P	YTHIA8
eV	348	рр	27	teva	27pp_py	rthia8_wp	rimezpr	ime	P	YTHIA8
TeV	346	pp	13	tev	13pp pv	rthia8 gcd	d 2lep		P	YTHIA8
TeV	345		13			q5py8 gk		p2aa		1ADGRAPH/I
TeV		рр				5 7 = 5		55		
	344	ממ	13	tevi	1300 DV	rthia8 akl	czradio	1200	P	3 3

Why HepSim?

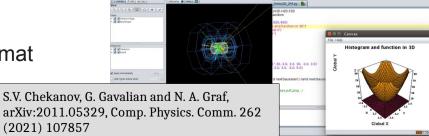
https://atlaswww.hep.anl.gov/hepsim/

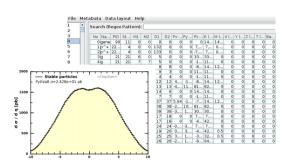
- Open access
 - No authentication for use of event files
- Preservation of MC data, settings and detectors
- Mitigate reproducibility problem in publications
 - Cite Monte Carlo data using DOI identifies
- Cache for iterative experiment design process
- Analysis using platform-independent software on Linux/Mac/Windows (+ URL data streaming)

Credits to W.Armstrong (Physics/ANL)

How it works

Leveraging large-scale computing



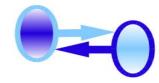

Software for end user

https://atlaswww.hep.anl.gov/hepsim/

Two OS-independent packages

- (1) hs-toolkit (30 MB)
 - Discovery and download Monte Carlo files from remote sites
 - Event browser for truth-level events
 - Processing truth-level files and full data-analysis with Lorentz vectors, jet algorithms, etc.
 - Histograms in 2D, 3D, X-Y plotting etc., \rightarrow vector-graphics images
 - Includes full Python 2.7 API via Jython
- (2) JAS4PP- Java Analysis Studio for Particle Physics (https://atlaswww.hep.anl.gov/asc/jas4pp/) (110 MB)
 - hs-toolkit included
 - User friendly IDE
 - Analysis of detector-level files in LCIO file format
 - ROOT I/O + many physics libraries
 - Full experiment-independent event display

Event samples for e+e- studies


https://atlaswww.hep.anl.gov/hepsim/

- 250 GeV: 25 events samples (truth level), ~ 30% after full & Delphes simulation
- 380 GeV: 24 event samples (truth level), ~ 20% after full & Delphes studies
- Also some 240 GeV, 500 GeV, 1 TeV samples are available
- See full list:
 - https://atlaswww.hep.anl.gov/hepsim/index.php?c=epem&e=0&t=all

Note on iteration:

- Any external event samples can easily be integrated in HepSim
- Put an event sample on Apache web server and index it as explained in https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=hepsim:dev_hepsim
- Low maintenance!

laces How to search and download a file with 10,000 e+e-: $\,H{\rightarrow}$ bbar process

- What is inside the download file?
- How to fill a few histogram from the truth-level file

Require Java

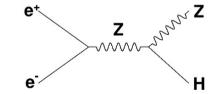
- How to create Pythia8 events in the HepSim format
- Conversions to ROOT, STDHEP, LCIO, HEPMC formats
- How to create fast Delphes simulations

Require Linux / ROOT / GCC compilers / /cvmfs/sw.hsf.org/key4hep/

URL link with this tutorial:

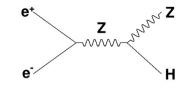
https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=fcs:fccee:tutorial

This part of the tutorial does not use any C++ specific libraries and can be done on any computers with Java installed. Check java:


java -version

Typically, it tells "openjdk version "1.8.0_352" or higher Java version.

wget https://atlaswww.hep.anl.gov/hepsim/soft/hs-toolkit.tgz -0 - | tar -xz; source hs-toolkit/setup.sh


Look at few events: $Z \rightarrow Z H$, where $Z \rightarrow$ nunu, and H decays to bbar.

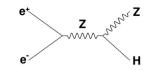
The CM energy is 250 GeV.

The sample is described in https://atlaswww.hep.anl.gov/hepsim/info.php?item=353

FCC-ee HepSim tutorial – 2 part

First, print all files with Higgs processes: **# hs-find higgs** Then grab the file with H to bbar at e+e-: **# hs-1s gev250ee_pythia8_zhiggs_nunubbar** Download 10 files (in 2 threads): **# hs-get gev250ee_pythia8_zhiggs_nunubbar data 2 10**

We should have 10 files in the directory "data". Take a look at a single file. We what to check how many events in the file etc. **# hs-info data/gev250ee_zh_nunubb_001.promc**

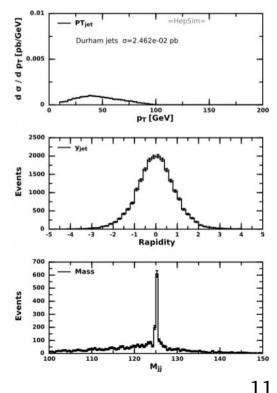

Do you want to print 1st event? Do this: # hs-info data/gev250ee_zh_nunubb_001.promc 1

Want to examine the log file? Do this: **# hs-log data/gev250ee_zh_nunubb_001.promc**

Let's study each event in the GUI mode (needs X-session!). Start this GUI and click each event number using the left panel: **# hs-view data/gev250ee_zh_nunubb_001.promc**

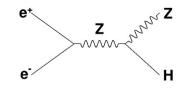
Run over this file using Python syntax and make a few simple distributions: https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=fcs:fccee:tutorial#validation

Making a first plot (truth-level events)



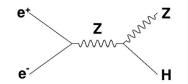
https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=fcs:fccee:tutorial#validation

The example is based on ~30 MB *hs-toolkit* package and a script written in in Python (Jython/Java backend)


- Run over local PROMC files or streaming events over the network by specifying dataset name
- Fill histograms using physics libraries with jet algorithms, event shapes, Lorenz vectors etc..
- Export images to vector format

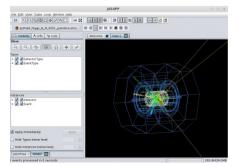
HepSim includes about ~100 scripts for data validation for truthlevel samples: https://atlaswww.hep.anl.gov/hepsim/macrolist.php

Delphes fast simulations

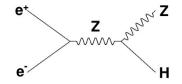

Fast simulations: Use the key4hep setup with gcc11 + ROOT: # source /cvmfs/sw.hsf.org/key4hep/setup.sh

Install Delphes: # wget http://cp3.irmp.ucl.ac.be/downloads/Delphes-3.5.0.tar.gz # tar -zxf Delphes-3.5.0.tar.gz # cd Delphes-3.5.0; make

Run: # ./DelphesProMC ./cards/delphes_card_CircularEE.tcl \ ../data/gev250ee_zh_nunubb_001.root ../data/gev250ee_zh_nunubb_001.promc


S.V. Chekanov, G. Gavalian and N. A. Graf, arXiv:2011.05329, Comp. Physics. Comm. 262 (2021) 107857

User-oriented desktop application. Download installer:


https://atlaswww.hep.anl.gov/asc/jas4pp/ and install as usual desktop application. Click the icon of and launch it

- Can search & download HepSim truth-level / reco files
- Supports Python, Groovy (faster!) syntax and Java
- Analyze data using the ProMC (truth-level) or LCIO (detector level) formats (or any native Java/Python IO supported too)
- ROOT-like graphics and large number of physics libraries

+ detector-independent event display (Wired3/Jas3)

Streaming e+e- data over the network

One can also specify HepSim data sample inside a script (without downloading files)

Example for H \rightarrow bbar at 240 GeV e+e-. Copy Python code and save as "example.py" https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=fcs:fccee:tutorial#data_streaming

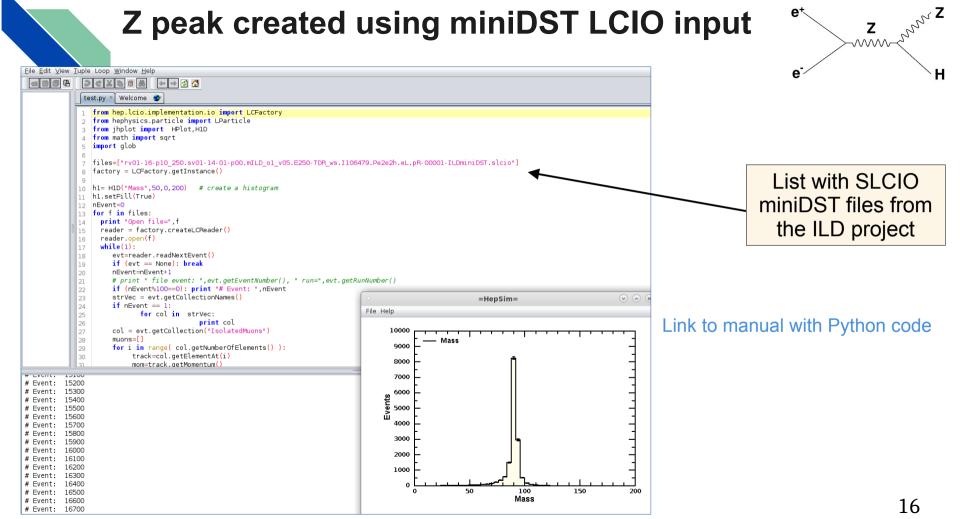
Open analysis macro inside Jas4pp and click "Run"

The e+e- data will be streamed, pT-distribution plot will be updated in real time.

 \rightarrow Used for validation tasks

Note: Data streaming is also supported using minimalistic hs-toolkit package

Analyzing LCIO files (detector-level)

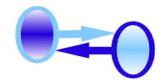

LCIO truth and detector-level files (See the talk LCIO turns 20: N.Graf CHEP2023 [PDF talk]) can also be analyzed in Python scripts using Java backend (or Java)

- LCIO files can be download from HepSim using "detector tags".
- Collection of Python scripts for LCIO input files listed in:
 - https://atlaswww.hep.anl.gov/hepsim/macrolist_lcio.php
- Many *.py and *.java scripts located in the directory "examples" of Jas4pp installation
 - Shows how to analyze tracks, hits, calorimeter clusters using LCIO files
- miniDST files from ILD detector (also SID and CLIC) can be used too:
 - Full analysis e+e- example running in jas4pp: https://atlaswww.hep.anl.gov/asc/wikidoc/doku.php?id=asc:jas4pp#reading_minidst_files

Z -^/////-

Z peak created using miniDST LCIO input

et


Ideas related to integration with FCC-ee (key4hep) software. Part I

- ProMC C++ library (https://atlaswww.hep.anl.gov/asc/promc/) can be put under key4hep. It allows reading HEPSIM files in C++ and develop the needed converters ProMC→ EDM (truth) and back, i.e. promc2edm and edm2promc
- Delphes should be recompiled after setting up \$PROMC environmental variable. This variable is set automatically after running ProMC "setup.sh" scrip.
 - Compiling Delphes with \$PROMC env variable creates "DelphesProMC" binary file
- Few other converters should be created:
 - LCIO \rightarrow EDM and EDM \rightarrow LCIO
 - STDHEP→EDM, HEPMC2→EDM (to support legacy files from ILC)
- If EDM files are publicly stored (under Apache web server), HepSim Web interface can link such files and make them searchable & downloadable

Ideas related to integration with FCC-ee (key4hep) software. Part II

- The rest of HepSim software is Java-centric. Does not require compilation.
 To make it fully available in ke4hep, we need:
 - JDK18 (or above)
 - hs-toolkit (https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=hepsim:hs-tools) used to discover files, validate files and process
- Jas4pp is optional (it is a desktop application). Requires X-window and thus it is easier to run it on a desktop

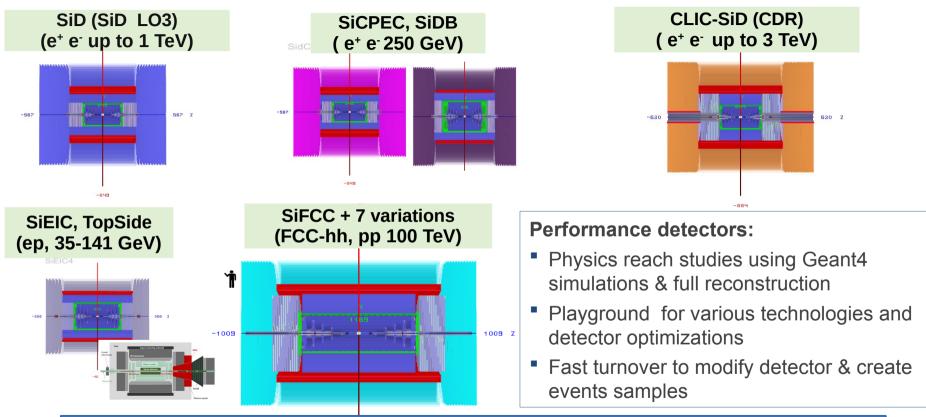
Thanks!

For more information, see the HepSim web manual and hs-help on the command line.

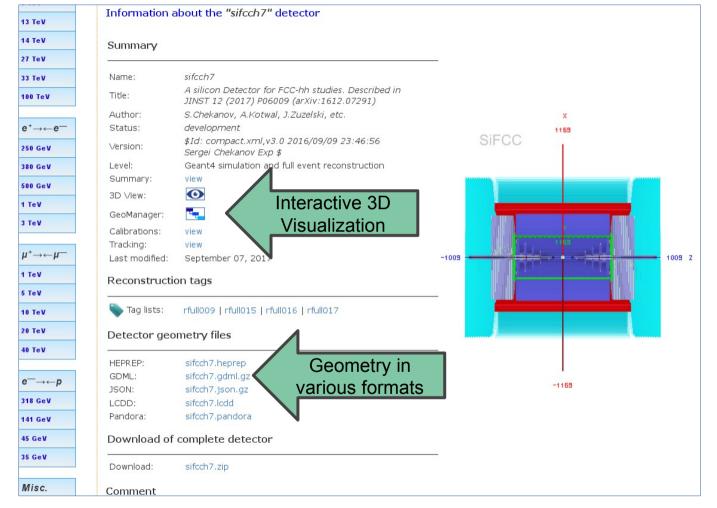
HepSim manual: https://atlaswww.hep.anl.gov/hepsim/doc/

HepSim contributors:

https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=hepsim:contributions


HepSim public results: https://atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=hepsim:public

~30 articles. Contributions to CEPC, CLIC, FCC-hh etc. conceptual design reports



Backup

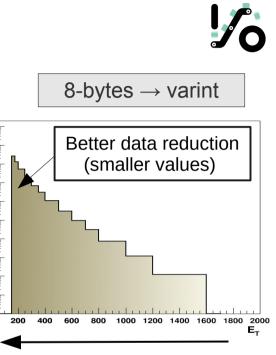
'All-silicon' design concepts supported in HepSim

Share similar design, but differ in sizes, calorimeter readouts etc Interfaced with common Monte Carlo samples

Web Interface - Detector

Main event file format **ProMC and ProIO**

http://atlaswww.hep.anl.gov/asc/promc/ and https://github.com/proio-org


- Archive-style self-described format to keep MC events ProMC:
 - Event records, NLO, original logfiles, PDG tables etc.
- 30% smaller files than any existing formats after compression

Number of used bytes depends on values. Small values use small number of bytes

Google's Protocol buffers

- Effective file size reduction for pile-up events where particles with small momenta use less bytes
- Separate events can be streamed over the Internet
- Other HepSim formats: ROOT, LHE and LCIO (full simulation)

d N / d E_T

10

1

10⁻¹ 10⁻² 10⁻³

10-4

10-5

10⁻⁶

10⁻⁸

compression strength keeping precision of representation constant

ProMC: S.C., E.May, K. Strand, P. Van Gemmeren, Comp. Physics Comm. 185 (2014), 2629

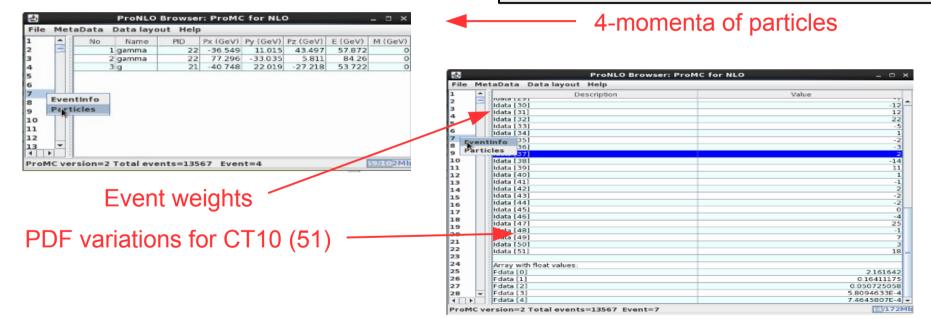
NLO QCD calculations as "ntuples"

S.C. Adv. High Energy Physics, vol. 2015, 13609

- Stored several NLO QCD calculations (MCFM, JETPHOX, NLOjet++)
- Data structure is different compared to full parton-shower MC

Theorists can use it too!

- "Particle record": Usually 4-momenta of 3-4 particles per events
- "Event record": includes "weights" and deviations from central weights for different PDF eigenvector sets for calculations of PDF uncertainties


$$w_n = \left[1000 \times (1 - \frac{PDF(n)}{PDF(0)})\right]$$
 N=1...51, for CT10 PDF

Weighted NLO events can be compactly stored using Google ProtocolBuffers:

- \rightarrow double precision "weights" \rightarrow int64 varint (deviations) \rightarrow 2 bytes per weight
- \rightarrow Large deviations are stored using 4 or 8 bytes (rarely)

NLO QCD calculations as "ntuples" for HEP experiments

MCFM prediction for $H(\rightarrow \gamma\gamma)$ +jet (pp 100 TeV) "higgsjet_gamgam_mcfm" sample Some NLO samples using MCFM have been created on Mira supercomputer (BlueGene/Q)

