Hot and dense QCD in high-energy colliders and neutron stars

Carlota Andres (she/her)

CPHT, École polytechnique

L International Meeting on Fundamental Physics and XV CPAN days Santander, October 2-6, 2023

• Hot QCD emergent dynamics at reach in collider experiments!

• Hot QCD emergent dynamics at reach in collider experiments!

• Hot QCD emergent dynamics at reach in collider experiments!

• Hot QCD emergent dynamics at reach in collider experiments!

Carlota Andrés

2

Neutron stars

• At T=0: No Lattice. But we have astrophysics and both particle and nuclear physics

 EoS of the inner core? Upper and lower bound from pQCD and Chiral EFT + astrophysical measurements (including GW data from binary neutron star mergers)

Number of degrees of freedom consistent with deconfined quark matter!

Carlota Andrés

Radii, compactness

Hot QCD in colliders

Where?

Relativistic Heavy Ion Collider (RHIC) Au-Au collisions

$$\sqrt{s_{\rm NN}} = 7.7 - 200 \,\rm GeV$$

(Also d-Au, He-Au, Cu-Cu, O-O...)

Large Hadron Collider (LHC) Pb-Pb collisions $2010 - 2011 : \sqrt{s_{NN}} = 2.76 \text{ TeV}$ $2011 - 2015 : \sqrt{s_{NN}} = 5.02 \text{ TeV}$ $2023 - 2025 : \sqrt{s_{NN}} = 5.36 \text{ TeV}$ (Also p-Pb, Xe-Xe)

Carlota Andrés

6

Heavy-ion program

- The LHC does not only collide protons on protons
- One month of running time per year is dedicated to the Pb-Pb program

• Other (lighter) ions runs (O-O) in Run 3

Heavy-ion program

- The LHC does not only collide protons on protons
- One month of running time per year is dedicated to the Pb-Pb program

• Other (lighter) ions runs (O-O) in Run 3

Harmonics [simplified]

- **Spatial anisotropy** of the initial state induces **momentum anisotropy** in the **final state**
- Final state anisotropies are measurable

$$\frac{\mathrm{dN}}{\mathrm{d\phi}} \propto 1 + \sum_{n=1}^{\infty} 2 v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

- Elliptic flow: $v_2 > 0$: collective expansion
- Higher harmonics: due to fluctuations in the initial state

X

Harmonics in HICs

Carlota Andrés

10

Relativistic hydrodynamics

Very small η/s : most perfect fluid in Nature

Current focus: increasing precision, reducing systematics, accessing new properties

Heavy-ion collisions

- Dynamical description of heavy-ion collisions from underlying theory of QCD remains a challenge
- Standard picture based on effective descriptions of QCD exploiting the clear separation of time scales

 Significant progress on understanding kinetic & chemical equilibration and incipient phenomenology in the pre-hydrodynamics stages

Collectivity in small systems

- Near-side ridge observed in p-Pb and d-Au by all RHIC and LHC experiments
- Hydro simulations able to describe the harmonics from these data
- The origin **may not necessary be hydrodynamics** (pre-equilibrium effects?)

Collectivity in small systems

Chen Lee, Chen, Chang, McGinn, Sheng, Innocenti, Maggi, arXiv.2309.09874

Data suggest that small systems lacking hadronic initial state effects could still yield a ridge-like signal

Small systems

• Shorter lifetime: larger sensitivity to pre-hydrodynamization

• System can fall apart before hydrodynamics start to apply!

Ambruş, Schlichting, Werthmann, Phys. Rev. Lett. 130 (2023)152301

• No jet quenching found in small systems!

Hard probes

• Hard probes ($Q \sim p_T, M_O$) are **produced** in the **initial hard scattering**

$$\tau_{\rm p} \sim \frac{1}{Q} \ll \frac{1}{Q_s} \ll \tau_{\rm hydro}$$

- $Q \gg \Lambda_{\rm QCD}$: their production is perturbative
- $Q \gg T$: their production is not affected by the medium

Open heavy flavor

- Hadrons that carry one charm or beauty quark
- At low *p_T*: **Brownian motion** due to kicks with the medium constituents

• Flavor preserved — they can be tagged

Focus on understanding heavy quark co-flow with the medium

Open heavy flavor

Due to their large mass, they need to experience many kicks to flow with the QGP bulk

v₂ {SP, |∆η|>0.9} .0 .5

0.4

0.2

0.1

0.0

ALICE

30–50% Pb–Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

Prompt D^0 , D^+ , D^{*+} average

(PL\$ 8\3 (2021) 136054)

Non-prompt D⁰

 $|y| < 0.8^{-1}$

p_ (GeV/c)

Svst. from data

10

ALICE Collaboration, arXiv:2307.14084

Syst. from B feed-down

CMS Collaboration, arXiv:2212.01636

- Charm quark flows
- **Possible flow of beauty** quark in the QGP?

Quarkonia

 $R_{\rm AA} =$

 Sequential suppression of bottomonia: less tightly bound states are more suppressed

Quarkonia

 $R_{\rm AA} =$

- Sequential suppression of bottomonia: less tightly bound states are more suppressed
- Charmonia: sequential suppression + regeneration

Why jets?

- Production of high-energy partons unlikely to interfere with the medium formation
- Sensitive to the QGP dynamics through jet quenching: jets interact with the QGP getting modified w.r.t p-p jets

They witness the full system evolution

• In principle: under control in p-p collisions

• Multi-scale objects: access to different time and energy scales

Jet quenching

Carlota Andrés

20

Medium-induced radiation

• The main contribution to energy loss in the <u>QGP</u> is radiative energy loss Dominant for light quarks and gluons

High-energy partons experience **multiple scatterings with the medium** which induce **extra gluon radiation** (w.r.t. p-p)

• During the formation time of the gluon multiple scatterings act coherently

LPM effect
$$t_f \sim \frac{\omega}{k^2}$$
 E

Suppression of the spectrum for large formation times

• Resummation of multiple scatterings: BDMPS-Z formalism (1990's)

CA, Apolinario, Martinez, Dominguez, JHEP 07 (2020) 114, JHEP 03 (2021) 102 Mehtar-Tani, Barata, <u>JHEP 07 (2019)</u> <u>057, JHEP 10(2020) 176</u> Schlichting, Soudi <u>Phys. Rev. D 105</u> (2022) 076002

21

Medium-induced radiation and transverse dynamics

 Jets decouple from the medium transverse dynamics in the usual (*eikonal*) medium-induced approaches

• Need of **generalizing** the medium-induced formalisms to account for $\mathcal{O}(1/\omega)$ (*subeikonal*) terms

Sadofyev, Sievert, Vitev, 2104.09513

CA, Dominguez, Sadofyev, Salgado, <u>2207.07141</u>

Barata, Sadofyev, Wang 2210.06519

Barata, Mayo López, Sadofyev, Salgado, 2304.03712

Kuzmin, Mayo López, and Reiten, and Sadofyev, 2309.00683

Jet quenching

- Traditionally, jet quenching aims at extracting properties of the QGP
- \hat{q} : average transverse momentum transfer per unit length

Jet substructure

How does a **strongly-coupled fluid** emerge from the **weakly-coupled quarks and gluons**?

Use jets' inner structure to probe the QGP at various length scales

Color coherence

Mehtar-Tani, Salgado, Tywoniuk, <u>Phys. Rev. Lett. 106 (2011) 122002</u>, <u>Phys. Lett B 707 (2012) 156</u>, <u>JHEP 10 (2012) 197</u>

J. Casalderrey-Solana and E. Iancu, JHEP 08 (2011) 015

• Splittings with small opening angle cannot be resolved by the medium: $\theta_{g} > \theta_{c}$ $\theta_g < \theta_c$ ____ Groomed jet radius Groomed jet Sketch by **Rey Torres** $R_{\rm AA}$ 0 - 10 % ATLAS Jet quenching bias $R_{\rm AA} =$ pp 5.02 TeV, 260 pb⁻¹ Pb+Pb 5.02 TeV, 1.72 nb⁻¹ **Ouenched** anti- $k_{t} R = 0.4$ jets narrow jet |y| < 2.1 0.8 $z_{\rm cut} = 0.2, \, \beta = 0$ Narrowing narrow broad 0.6 Yield $0.4 - p_{T}^{jet} > 158 \text{ GeV}$ Unquenched spectra -- 158 < ρ^{jet} < 200 GeV $0.2 - 200 < p_{\tau}^{\text{jet}} < 315 \text{ GeV}$ Quenched broad jet <mark>- * 3</mark>15 < p_⊤^{jet} < 501 GeV 0.003 0.1 0.2 0.01 0.02 Measured jet p_T CMS, PAS-HIN-23-001 ATLAS, PRC 107 (2023) 054909 $r_{g} = \theta_{g} R$

Color coherence

Use photon-tagged jets

CMS-PAS-HIN-23-001

Color coherence

Use photon-tagged jets

New tools: energy correlators

 $\mathscr{E}(\vec{n}) = \lim_{r \to \infty} \left| dt \, r^2 n^i T_{0i}(t, r\vec{n}) \right|$

- Correlators $\langle \mathscr{E}(\vec{n}_1)\mathscr{E}(\vec{n}_2)\cdots\mathscr{E}(\vec{n}_k)\rangle$ of the **energy flux:**
- Substructure without declustering
- Well-controlled p-p baseline (measured this year for the first time) Komiske, Moult, Thaler, Zhu, <u>Phys. Rev. Lett. 130 (2023) 051901</u>

Jet quenching in the initial stages?

- Jet quenching not (yet?) observed in small systems
- In small systems the **pre-hydrodynamics stages** are specially important
- Jets sensitive to the pre-hydrodynamics stages

Understanding jet quenching in these stages becomes crucial!

Jet quenching in the initial stages?

Many new developments in the computation of the broadening in the pre-hydrodynamic stages

Carrington, Czajka, Mrówczynski, <u>Phys. Lett.B 834 (2022) 137464</u> <u>Phys Rev C. 105 (2022) 6, 064910</u>

Avramescu, Baran, Greco, Ipp, Müller, Ruggieri, <u>Phys. Rev. D 107 (2023), 114021</u>

Within Kinetic theory

Boguslavski, Kurkela, Lappi, Lindenbauer, Peuron, <u>2303.12595</u>

\hat{q} relatively large!

Conclusions

- QCD has a **rich dynamics** within experimental reach
- QCD EoS for both hot and cold dense matter can be studied using different experimental tools
 - Heavy-ion colliders: for hot and low baryon chemical potential
 - First constraints from gravitational waves on EoS of the core of neutron stars
- Hot QCD at RHIC and at the LHC
 - Continuous progress on the characterization of the QGP
 - Many interesting questions to be answered in the next decade

How does a strongly-coupled fluid emerge from an asymptotically free gauge theory?

Future of HICs

- sPHENIX experiment at RHIC (BNL): HI runs up to 2025
- HI runs at the LHC (CERN) up to 2041!

18 more years of heavy-ion physics at the LHC!

Gracias!