

Nuclear reactions at heavy-ion storage rings

B. Jurado¹, M. Sguazzin¹, J. Pibernat¹, J. A. Swartz¹, M. Grieser², J. Glorius³, Y. A. Litvinov³, R. Reifarth⁴, K. Blaum², P. Alfaurt¹, P. Ascher¹, L. Audouin⁵, C. Berthelot¹, B. Blank¹, B. Bruckner⁴, S. Dellmann⁴, I. Dillmann⁶, C. Domingo-Pardo⁷, M. Dupuis⁸, P. Erbacher⁴, M. Flayol¹, O. Forstner³, D. Freire-Fernandez², M. Gerbaux¹, J. Giovinazzo¹, S. Grevy¹, C. Griffin⁶, A. Gumberidze³, S. Heil⁴, A. Heinz⁹, D. Kurtulgil⁴, G. Leckenby⁶, S. Litvinov³, B. Lorentz³, V. Meot⁸, J. Michaud¹, S. Perard¹, U. Popp³, M. Roche¹, M.S. Sanjari³, R.S. Sidhu¹⁰, U. Spillmann³, M. Steck³, Th. Stöhlker³, B. Thomas¹, L. Thulliez⁸, M. Versteegen¹, B Wloch¹

1- LP2I (ex-CENBG), Bordeaux, France
2- MPIK, Heidelberg, Germany
3-GSI, Darmstadt, Germany
4-University of Frankfurt, Germany
5-IJCLAB, Orsay, France
6-Triumf, Vancouver, Canada
7-IFIC, Valencia, Spain
8-CEA, France
9-University of Chalmers, Sweden
10-University of Edinburgh, UK

Introduction:

Neutron-induced reactions at energies below few MeV:

Motivation:

Need for neutron-induced reaction cross sections of radioactive nuclei

Essential for astrophysics, energy production and medicine!

 \rightarrow Very difficult or even impossible to measure with standard techniques because of the radioactivity of the targets.

 \rightarrow Complicated to calculate due to the difficulty to describe the de-excitation process (level densities, γ -ray strength functions, fission barriers...). Calculations can be wrong by several orders of magnitude!

Surrogate-reaction method

Decay probabilities as a function of excitation energy are precious observables to constrain models (level densities, γ -ray strength functions, fission barriers...) and provide much more accurate predictions for neutron-induced cross-sections of nuclei far from stability.

Setup for the study of surrogate reactions in direct kinematics

Advantages of heavy-ion storage rings

The ESR at GSI/FAIR, Darmstadt, Germany

Beam cooling → Excellent energy and position resolution of the beam, maintained after each passage through the target, negligible, E-loss & straggling effects

Use of ultra-low density in-ring gas-jet targets ~10¹³/cm².

Effective target thickness increased by ~10⁶ due to revolution frequency (at 10 A MeV)

High-quality, pure, fully-stripped beams and pure, ultra-thin, windowless targets → unique!

Circunference of ~ 108 m

Challenge: Detectors in Ultra-High Vacuum (10⁻¹⁰-10⁻¹¹ mbar)!

First surrogate reaction experiment at the ESR, 20-27 June 2022 208Pb+p \rightarrow 208Pb*+p' \leftrightarrow n + 207Pb \rightarrow 208Pb*

First surrogate reaction experiment at the ESR, target-residue detector system

First surrogate reaction experiment at the ESR, beam-like residue detector system

Preliminary results, excitation energy resolution

Simulations of excitation energy resolution

PhD Thesis of Michele Sguazzin

Preliminary results, detection of beam-like residues

PhD Thesis of Michele Sguazzin

Perspectives: measure simultaneously fission, neutron and gamma-emission probabilities

Conclusions...

- -Storage rings offer the ideal conditions to investigate surrogate reactions and more largely, nuclear reactions!
- -First experiment succesfully conducted at the ESR in June 2022
 - $\rightarrow \Delta E^* \approx 280-330$ keV, expect < 100 keV with smaller target radius
 - → Full separation and 55-100% detection efficiency for beam-like residues
 - \rightarrow First ever measurement of P_n
 - \rightarrow Our data on P_n allowed us to select level-density & γ -ray strength functions of 208Pb
 - \rightarrow Predicted 207Pb(n, γ) cross section agrees with evaluations
- -Adding fission detectors to measure simultaneously P_{γ} , P_n and P_f with ²³⁸U at ESR, June 2024

...Perspectives

- -Build dedicated reaction chamber to significantly increase efficiency for target residues and fission at ESR. Target radius 0.5-1 mm!
- -Precision measurements of P_{γ} , P_n , P_f and P_{2n} with radioactive beams!

Acknowledgements

CMIS

This work is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715). NECTAR: Nuclear rEaCTions At storage Rings

Prime 80 program from CNRS, PhD thesis of M. Sguazzin

GSI Helmholtzzentrum für Schwerionenforschung

Accord de collaboration 19-80 GSI/IN2P3