Current neutrino measurement results and plans

Inés Gil Botella CIEMAT 5 October 2023

L International Meeting on Fundamental Physics and XV CPAN Days 2 - 6 October 2023

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Disclaimer

- Imposible to cover all neutrino physics results in one talk
- (My personal) selection of some results
- Apologies for omissions

Outline

- Where do we stand?
- Neutrino oscillation measurements
 - ✦ Global fits
 - ✦ Solar, reactor neutrino results
 - ✦ LBL, atmospheric neutrino results
 - Anomalies
 - ✦ Prospects: JUNO, HK, DUNE

Neutrino mass measurements

- Neutrinoless double beta decay searches
- CEvNS
- Astrophysical neutrinos
- Conclusions

Neutrinos beyond the Standard Model

• The last 20 years have been a revolution for neutrino physics

- Observation of neutrino oscillations \rightarrow non-vanishing neutrino mass (flavor mixing)
- First evidence of physics beyond the Standard Model

Main open questions

However, there are **fundamental unanswered questions**:

- ♦ What is the absolute neutrino mass scale?
- Dirac or Majorana neutrinos?
- Why are neutrinos much lighter than the other fermions?
- What is the neutrino mass ordering?
- ♦ Is the CP-phase non-zero? What is its value?
- ♦ Are there any sterile neutrino states? If so, what are their masses? Deviations from unitarity of the PMNS matrix?

Connection with astrophysics and cosmology

Neutrinos as probes of the Universe:

- High-energy neutrino physics
- New astrophysical sources
- Core-collapse supernova and diffuse SN neutrino background
- Relic neutrinos from early Universe
- Matter-antimatter asymmetry relation
- Sterile neutrinos as dark matter?

Blazar TXS 0506+056 detected by IceCube, FERMI-LAT and MAGIC ~290 TeV v energy

Neutrino sources

		φ _ν ~65 x 10 ⁹ /cm ² s Sun	E ~ MeV		<pre> \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	E ~ GeV-TeV
			L ~ 10 ⁸ km			L ~ 10 - 10 ⁴ km
AL		φ _ν ~10 ⁶ /cm ² s	E ~ MeV			E ~ MeV
TUR		Earth		(Supernovae	
N			L ~ 10 - 10 ³ km	and the second sec		L ~ kpc- Mpc
		φ _v ~300 /cm ³	E ≈ meV			E ~ TeV-PeV
	2	Big Bang			Astrophysics	
			L~ Mpc		Accelerators	L ~ kpc- Mpc
AL		φ., ~2 x 10 ²⁰ /s GW ₄₄	E ~ MeV			E ~ GeV
		Nuclear Reactors			Particle	
Ë					Accelerators	
AR	Contractory of the second seco		L ~ 1-100 KM			L ~ 100-1000 km

Neutrino fluxes at Earth

Neutrino oscillations

Unknown parameters: mass ordering (sign of Δm^2_{31}), δ_{CP} , octant of θ_{23}

Oscillation probability

Neutrino measurements and plans - L IMFP/ XV CPAN 2023

10

Global fit information

Global 6-parameter fit (including δ_{CP}):

- Solar: CI + Ga + SK(1-4) + SNO-full (I+II+III) + Borexino;
- Atmospheric: SK-1 + SK-2 + SK-3 + SK-4; + IceCube
- Reactor: KamLAND + Double-Chooz + Daya-Bay + Reno;
- Accelerator: Minos (DIS+APP) + T2K (DIS+APP);

+ NOvA (DIS+APP)

- **θ₂₃ octant** is **not resolved** yet (slight preference for the second octant)
- The sign of Δm_{32}^2 is **unknown** (Normal Ordering) preferred at $\sim 2.5\sigma$)
- **δ_{CP} unknown**: Some tension between current LBL and atm experiments in NO. CP-violation for IO at $\sim 3\sigma$

de Salas et al., JHEP 02 (2021) 071

Neutrino measurements and plans - L IMFP/ XV CPAN 2023

de Salas et al., JHEP 02 (2021) 071

de Salas et al., JHEP 02 (2021) 071

de Salas et al., JHEP 02 (2021) 071

Oscillation Parameters

			Relative	
parameter	best fit $\pm 1\sigma$	3σ range	precision a	t 1σ
$\Delta m_{21}^2 \ [10^{-5} {\rm eV}^2]$	$7.50\substack{+0.22\\-0.20}$	6.94 - 8.14	3%	Precision
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}$	$2.55\substack{+0.02\\-0.03}$	2.47 – 2.63	1%	SIGN UNKNOWN
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] (\text{IO})$	$2.45_{-0.03}^{+0.02}$	2.37 – 2.53		
$\sin^2 \theta_{12} / 10^{-1}$	3.18 ± 0.16	2.71 – 3.69	5%	Precision
$\sin^2 \theta_{23} / 10^{-1} (\text{NO})$	5.74 ± 0.14	4.34 - 6.10	5%	OCTANT UNKNOWN
$\sin^2 \theta_{23} / 10^{-1} $ (IO)	$5.78\substack{+0.10 \\ -0.17}$	4.33 - 6.08		
$\sin^2 \theta_{13} / 10^{-2} (\text{NO})$	$2.200^{+0.069}_{-0.062}$	2.000 - 2.405	20/	Dracician
$\sin^2 \theta_{13} / 10^{-2} $ (IO)	$2.225\substack{+0.064\\-0.070}$	2.018 - 2.424	0 /0	
δ/π (NO)	$1.08\substack{+0.13 \\ -0.12}$	0.71 – 1.99		CP VIOI ΔΤΙΟΝ ?
δ/π (IO)	$1.58^{+0.15}_{-0.16}$	1.11 - 1.96		

de Salas et al., JHEP 02 (2021) 071

Solar and reactor neutrino oscillations

pp chain

15%

^βΒ-ι

pp-v

 $p + p \rightarrow {}^{2}H + e^{-1}$

⁷Be-ν 99.87%

 $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \nu$

 $^{7}\text{Li} + p \rightarrow 2^{4}\text{He}$

pp-II

99.6%

85%

 $^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2p$

pp-l

Solar neutrinos

Day-night flux asymmetry 2(D-N)/(D+N)

pp chain

15%

³B-1

pp-v

 $p + p \rightarrow {}^{2}H + e^{-1}$

⁷Be-ν 99.87%

 $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \nu$

 $^{7}\text{Li} + p \rightarrow 2^{4}\text{He}$

pp-ll

99.6%

85%

 $^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2p$

pp-l

Solar neutrinos

Day-night flux asymmetry 2(D-N)/(D+N)

SNO / Super-K detectors

- 1 kt heavy water Cerenkov detector in Sudbury mine (Canada) \bullet
- Nobel prize in physics (2015) by the solar neutrino oscillations thanks to 3 detection channels (Solar Neutrino Problem solved)
- SNO finished in 2006: SNO+ devoted to neutrinoless double beta decay searches
- **CC** $v_e + d \Rightarrow p + p + e^{-1}$
- $ES \quad v_x + e^- \Rightarrow v_x + e^ NC \quad v_x + d \Rightarrow p + n + v_x$

Super-K

 $ES V_x + e^- \rightarrow V_x + e^-$

(solar channel)

- 50 kt (22.5 kt fid) Water Cerenkov detector (taking data since 1996) in Kamioka mine (Japan)
- Provides direction and energy of solar neutrinos \bullet

Oscillation of solar neutrinos

• Best solar ν measurements by SNO and SuperKamiokande

Phys. Rev. C88, 025501 (2013) - SNO Phys. Rev. D94, 052010 (2016) - SK

17

Solar + KamLAND (LBL reactor) oscillation results

- **KamLAND** (2002-2011): 1 kt liquid scintillator reactor neutrino experiments in Japan (L~180 km from nuclear power plants) \rightarrow antineutrino oscillations
- Now KamLAND-Zen: neutrinoless double beta decay

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E_v}\right)$$

Slight disagreement between solar (electron

Borexino

- 278 ton liquid scintillator v-e scattering (Gran Sasso Laboratory - Italy)
- Real time measurements of the MeV-subMeV flux and spectrum of solar neutrinos:
 - \bullet Monochromatic ⁷Be v (0.86 MeV) & ⁸B, pep, CNO, pp measurements
 - High radiopurity requirements
- 200 keV energy threshold
- Excellent energy resolution (5% at 1 MeV)
- Very low background level

Borexino - pp measurement

First evidence of CNO solar neutrinos

- CNO is dominant in stars heavier than $1.3 M_{\odot}$
 - Never directly observed before
 - The abundance of these elements is related to the solar metallicity
- Data taking: 2018-2020
- Challenge:

- ◆ Measure the backgrounds: pep-v and ²¹⁰Bi (main problem)
- Thermal stabilization to constrain the ²¹⁰Bi contaminating the scintillator ($^{210}Bi < 11.5 \pm 1.3$ cpd/100t)

Nature 587 (2020) 577-582

(Short-baseline) Reactor neutrino experiments

Pure θ_{13} measurement from electron antineutrino disappearance

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E_v} \right)$$

Liquid scintillators doped with Gd

Inverse beta decay: $\overline{v}_e + p \rightarrow e^+ + n$

Daya Bay

RENO

Neutrino measurements and plans - L IMFP/ XV CPAN 2023

France

China

Korea

Reactor neutrino status

LBL and atmospheric neutrino oscillations

Long-baseline accelerator neutrinos

T2K (Tokai to Kamioka) in Japan

- Long-baseline experiment: near (ND280) and far (SK) detectors
- Neutrino beam travels 295 km across Japan
- T2K beam is 95% v_{μ} , 4% \overline{v}_{μ} , <1% v_e ~500 kW neutrino beam
- Both detectors are 2.5° off v beam axis ($E_{peak} \approx 600 \text{ MeV}$)

NOvA (NuMI Off-Axis Nue Appearance) in USA

- 810 km baseline from Fermilab to Ash River, MN
- ▶ 700 kW NuMI neutrino beam at Fermilab
- Near and Far Detectors placed 14 mrad off the NuMI beam axis
- Measure $v_{\mu} \rightarrow v_{e}$, $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ to:
 - Determine v mass hierarchy
 - Determine the θ_{23} octant
 - Constrain δ_{CP}
- Use $v_{\mu} \rightarrow v_{\mu}$, $\bar{v}_{\mu} \rightarrow \bar{v}_{\mu}$ to:
 - make precise measurements of θ_{23} and Δm^2_{32}
- Many other physics topics:
 - v cross sections at the ND
 - Sterile neutrinos
 - Supernova neutrinos

Octant and mass ordering from LBL

- Results consistent with maximal disappearance
- Slight preference for the second octant for NO
- Δm^2_{32} measurement dominated by NOvA
- $sin^2\theta_{23}$ measurement dominated by T2K

- antineutrinos (for IO) for energies < 15 GeV
- - ordering at 74% assuming oscillation parameters at the best fit point
- IceCube (DeepCore) results Phys. Rev. D 108, 012014 (2023)

CP violation results from LBL

Phys. Rev. D 103, 112008

Weak preference for NH and upper θ_{23} octant

Parameter	Best-fit and 1σ interval			
1 arameter	NO	IO		
$\delta_{ m CP}$	$-1.89_{-0.58}^{+0.70}$	$-1.38^{+0.48}_{-0.55}$		
$\sin^2 heta_{23}$	$0.532^{+0.030}_{-0.037}$	$0.532^{+0.029}_{-0.035}$		
$\Delta m^2_{32} / 10^{-3} {\rm eV}^2 c^{-4}$	$2.45^{+0.07}_{-0.07}$			
$ \Delta m_{13}^2 /10^{-3} \text{eV}^2 c^{-4}$		$2.43^{+0.07}_{-0.07}$		

First evidence (4.4 σ) of $\overline{\nu_e}$ appearance in $\overline{\nu_{\mu}}$ beam

Tension between T2K and NOvA in CP phase for NO

Neutrino oscillation anomalies

- Anomalies pointing to ~1 eV scale in mass difference
- Evidence for sterile neutrinos is **inconclusive**. Big tension between appearance and disappearance measurements

LSND + MiniBooNE

 $(\Delta m^2, \sin^2 2\theta) = (0.041 \text{ eV}^2, 0.918)$ The reactor Fattomaly anomaly $\chi^2/ndf = 19.4/15.6$ (prob = 21.1%) — 90% CL 1.15 1.1 Nucifer — 99% CL (2012)_≩ 1.05 — 3σ CL 10 — 4σ CL 0.95 N/S KARMEN2 90% CL z⁸ 0.85 OPERA 90% CL $\Delta m^2 (eV^2)$ Mention et al, 11,12 0.8 $\nu + \nu$ 10⁰ $f = 0.935 \pm 0.024$ (different from 1 @ 2.7 σ) 10⁻¹ LSND 90% CL systematics? Micropomormatization of 121 electron spectra LSND 99% CL interpretation to the fifetime (use 2012) PD G value) [10- 10^{-1} 10^{-3} 10^{-2} sterile neutrinos at the eV scale? Ians - L IMFP/ XV CPAN 2023 sin²20 Phys. Rev. Lett. 121 (2018) 221801

 $\nu_{\scriptscriptstyle 4}$

Ga anomaly (3+ 1.1 10² 10³ 10 0.9 Distance to Reactor (m) Disagreements with predictions. ²³⁵U may be incorrect in the flux model SBL reactor data (L < 100m) in tension with predicted flux 0.8 0.7 0.6 GALLEXCOL GALLERCH SAGEAN a Ct

Intense ⁵¹Cr and ³⁷Ar neutrino sources show deficit wrt predictions. Recently confirmed by BEST

SACIE

Global sterile results

- Tension between the three results
- appearance and disappearance experiments)

Observation by LSND & MiniBooNE

Observation by reactors & radioactive sources

• Sterile neutrino models fail to simultaneously account for all experimental data (strong tension between

Non observation

JHEP 08 (2018) 010

Short-Baseline Neutrino Program at Fermilab

Other experiments (VSBL reactors)

- Large number of very shortbaseline reactor experiments ongoing (sterile neutrino searches)
 - ✦ Stereo, SoLid, Neutrino-4, NEOS, DANSS, Prospect,

. . .

• CEvNS reactor experiments: CONNIE, CONUS, ...

Prospects in neutrino oscillations

Discovery opportunities

• CP violation

- \bullet T2K and NOvA could reach 3 σ sensitivity to CPV over the next years
- To reach discovery and precise measurement, larger detectors and (upgraded or new) **beams** are needed

Neutrino mass ordering

Small preference for NO with current data (not conclusive)

• Octant of θ_{23}

◆ Maximal? $\nu_{\mu} \leftrightarrow \nu_{\tau}$ mixing symmetric? If so, why?

- **Neutrino anomalies:** sterile neutrinos?
- **Solar neutrinos**: hep neutrino flux
- Supernova burst and Diffuse SN Neutrino Background detection
- Beyond the Standard Model: nucleon-decay, testing the 3neutrino flavor paradigm

JUNO (Jiangmen Underground Neutrino Observatory)

- Next-generation Large Liquid Scintillator detector (20 kton)
- oscillation parameters (<0.5%) in 6y + other low-E physics

JUNO (Jiangmen Underground Neutrino Observatory)

- Next-generation Large Liquid Scintillator detector (20 kton)
 - ✦ Medium baseline reactor experiment (<L>=50 km) in China
 - Aim at much improved light yield and energy resolution $\approx 3\%/\sqrt{E(MeV)}$
 - ✦ Relatively shallow depth (700m overburden)
 - ✦ Expect to start data taking in 2024!
- Design to reach 3σ precision on mass ordering determination after 6y + precise solar oscillation parameters (<0.5%) in 6y + other low-E physics

d plans - L IMFP/ XV CPAN 2023

Long-baseline neutrino accelerator experiments

Oscillation probability in matter

 $P(\overline{\nu_{\mu}}) \rightarrow (\overline{\nu_{e}}) \approx \sin^{2}\theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{21} - aL)^{2}} \Delta_{31}^{2}$

T2HK: Tokai to HyperK

- ◆ Minimize matter effects and maximize statistics to focus on <u>CPV</u> discovery (MO and other parameters must be known by other means) + non-beam physics program
- ◆ Narrow-band beam (~0.6 GeV; 500 kW → 1.3 MW) and Water-Cerenkov detector (190 kt fiducial)

DUNE: FNAL to SURF

- Measure first and second oscillation maxima to disentangle <u>CPV</u> and matter effects and access to all neutrino oscillation parameters + non-beam physics program
- Wide-band beam (0.5-5 GeV; 1.2 \rightarrow 2.4 MW) and liquid Argon TPC (>40 kt fiducial)

Hyper-Kamiokande

- Upgrade J-PARC neutrino beam with expected power >750 kW, 2.5° off-axis angle
- Baseline: 295 km
- Possibility to add a second far detector in Korea (baseline 1100 km)
- Aiming to start operation in 2027

 - Between 20-40% photocathode coverage
 - Front-end electronics inside the tank
 - New cavern in a different part of Kamioka mine under construction

WC Total volume: 260 kton pure water, Inner detector: 216 kton, Fiducial volume: ~200 kton (x 8 SK)

Hyper-Kamiokande sensitivity

- Able to exclude CP conservation at 3σ for 76% of δ_{CP} values (if MO known) in 10 years for nominal power (or can exclude 57% of true δ_{CP} values at 5 σ)

• 3σ MO determination for sin² θ_{23} > 0.42 (0.43) for normal (inverted) hierarchy for 10y of data taking

- magnetized beam monitor
- nucleon decay, Beyond Standard Model searches, non-standard interactions...

• 70 kton (4 x 10 kt fiducial) LAr TPC far detectors at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity v_{μ} beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW

• Near detector (CDR: arXiv:2103.13910) at 540 m from the neutrino source: LArTPC, TMS/magnetized GAr TPC &

Physics goals: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos, solar neutrinos,

- magnetized beam monitor
- nucleon decay, Beyond Standard Model searches, non-standard interactions...

• 70 kton (4 x 10 kt fiducial) LAr TPC far detectors at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity v_µ beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW

• Near detector (CDR: arXiv:2103.13910) at 540 m from the neutrino source: LArTPC, TMS/magnetized GAr TPC &

Physics goals: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos, solar neutrinos,

- magnetized beam monitor
- nucleon decay, Beyond Standard Model searches, non-standard interactions...

• 70 kton (4 x 10 kt fiducial) LAr TPC far detectors at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity v_{μ} beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW

• Near detector (CDR: arXiv:2103.13910) at 540 m from the neutrino source: LArTPC, TMS/magnetized GAr TPC &

Physics goals: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos, solar neutrinos,

- magnetized beam monitor
- nucleon decay, Beyond Standard Model searches, non-standard interactions...

• 70 kton (4 x 10 kt fiducial) LAr TPC far detectors at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity v_µ beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW

• Near detector (CDR: arXiv:2103.13910) at 540 m from the neutrino source: LArTPC, TMS/magnetized GAr TPC &

Physics goals: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos, solar neutrinos,

- magnetized beam monitor
- nucleon decay, Beyond Standard Model searches, non-standard interactions...

• 70 kton (4 x 10 kt fiducial) LAr TPC far detectors at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity v_{μ} beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW

• Near detector (CDR: arXiv:2103.13910) at 540 m from the neutrino source: LArTPC, TMS/magnetized GAr TPC &

Physics goals: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos, solar neutrinos,

- magnetized beam monitor
- nucleon decay, Beyond Standard Model searches, non-standard interactions...

• 70 kton (4 x 10 kt fiducial) LAr TPC far detectors at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity v_µ beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW

• Near detector (CDR: arXiv:2103.13910) at 540 m from the neutrino source: LArTPC, TMS/magnetized GAr TPC &

Physics goals: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos, solar neutrinos,

- magnetized beam monitor
- nucleon decay, Beyond Standard Model searches, non-standard interactions...

• 70 kton (4 x 10 kt fiducial) LAr TPC far detectors at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity v_{μ} beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW

• Near detector (CDR: arXiv:2103.13910) at 540 m from the neutrino source: LArTPC, TMS/magnetized GAr TPC &

Physics goals: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos, solar neutrinos,

ProtoDUNE-VD (770 ton LAr)

ProtoDUNE/DUNE ~1/20 Full scale DUNE FD components

CERN Neutrino Platform

ProtoDUNE-HD (770 LAr ton)

ProtoDUNEs operation at CERN

FIRST PHASE PROTODUNEs

- Construction and operation of ProtoDUNEs at CERN between 2018 and 2020
- Successful demonstration of the DUNE LAr TPC performance

ProtoDUNEs operation at CERN

FIRST PHASE PROTODUNEs

- Construction and operation of ProtoDUNEs at CERN between 2018 and 2020
- Successful demonstration of the DUNE LAr TPC performance

SECOND PHASE PROTODUNEs (2020-2023 construction + operation \geq 2024)

- ProtoDUNE-HD
 - Final technical solutions for all FD1 subdetectors
 - ◆ Installation completed and waiting for filling and data taking in 2024 with test-beam. and cosmic muons
- ProtoDUNE-VD
 - ✦ Realization of a Module-0 detector in 2022-2023; ready for filling and data taking in 2024

DUNE Phases

- **DUNE Phase I** (2026 start inst; 2029 physics; 2031 beam+ND)
 - ✦ Full near + far site facility and infrastructure
 - ♦ Upgradeable 1.2 MW beam
 - ◆ Two 17 kt LArTPC modules
 - Movable LArTPC near detector with muon catcher
 - ♦ On-axis near detector

• **DUNE Phase II**:

- ♦ Two additional FD modules (≥40 kt fiducial in total)
- ✦ Beam upgrade to >2 MW
- More capable Near Detector

DUNE Physics Program

- DUNE can determine the neutrino mass ordering at 5σ in 1-3 years of data (depending on δ_{CP} value)
- Excellent resolution to θ_{23}
- CP violation: if maximal, 3σ (5σ) observation in 3y (7y), 5σ CPV for 50% of δ_{CP} , 6° -16° resolution
- Precise measurement of all oscillation parameters

Supernova and solar neutrinos + BSM (NSI, non-unitary mixing, dark matter, sterile neutrinos, nucleon decay,...)

Neutrino mass

Neutrino mass measurements

• **Direct measurements**:

Tritium beta decay experiments:

★ KATRIN 2019: m < 0.8 eV (90% CL)</p>

✦ KATRIN (goal): m < 0.2 eV (90% CL)</p>

• Neutrinoless double beta decay:

- ✦ If measured, neutrinos are Majorana particles
- ◆ GERDA, EXO, CUORE, CUPID, NEMO-3, KamLAND-Zen: $m_{\beta\beta} < 36-156 \text{ meV} (90\% \text{ CL})$

+ Future ton scale: $m_{\beta\beta} < 10$ meV (only IO)

Indirect measurements (Cosmology):

PLANCK 2018: A&A 641 (2020) A6

 $\Rightarrow \sum m_v < 0.12 \text{ eV}$ (Planck TT, TE, EE + low E + lensing + BAO)

- \bullet N_{eff} = 4 excluded at > 99%CL
- \bullet N_{eff} = 2.99 +0.34 -0.33 (Planck TT, TE, EE + low E + lensing + BAO)

From oscillations: $m_{\nu} > 0.05 \text{ eV}$

$$m_{v_e}^2 = \sum_i \left| U_{ei} \right|^2 \cdot m_{v_i}^2$$

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^{2} \cdot m_{v_{i}} \right|_{i}$$

Status of KATRIN

Latest KATRIN result

Nature Physics 18, 160-166 (2022)

Expectation after 1000 days of measurement time: $m_{\nu} < 0.2 \text{ eV}$

- $2v\beta\beta$ has been observed in more than 10 isotopes (lifetimes $10^{18} 10^{21}$ y)
- **Ovßß** has not been observed yet (lifetimes > $10^{25} 10^{26}$ y):
 - It would imply total lepton number violation (LNV) and neutrino Majorana mass
 - Different mechanisms are possible: SUSY, leptoquarks, extradimensions, Majorons, ...
 - Most discussed mechanism: light Majorana neutrino exchange

ββ2ν

0.6

0.4

0.2

ββον

Current status of 0vßß searches

Current status of 0vßß searches

Current status of 0vßß searches

From TAUP 2023 D. Moore

Current and future sensitivity

Current and future sensitivity

CEvNS (Coherent Elastic neutrino-Nucleon Scattering)

SPOTTIN

- Neutral current process predicted by Freedman (1974)
- Neutrino scatters off an entire nucleus ($\nu + A \rightarrow \nu + A$)
- Cross-section scales with the (number of neutrons)² in the target nucleus
- First measurement by **COHERENT** in 2017 at the Spallation Neutron Source at ORNL
 - CEVNS measurements open the way to use this technique for reactor neutrino detection and many BSM physics topics (DM, sterile osc., NSI, neutrino electromagnetic properties, etc.)

Astrophysical neutrinos - Supernova burst and DSNB

- Detection of core-collapse supernova neutrinos (99%) SN binding energy emitted in ~10 seconds by neutrinos) provides information about:
 - Core-collapse explosion mechanism
 - Neutrino properties

- Detection of diffuse supernova neutrino background (averaged neutrino flux from all supernovae)
 - No detected yet
 - Best upper limits from Super-K

Accretion

ve Burst

ີຍ 300

200

Neutrino measurements and plans - L IMFP/ XV CPAN

Cooling

Astrophysical neutrinos - high-energy neutrinos

- Atmospheric neutrinos
 - ♦ Up to 100 TeV
- Cosmic neutrinos (~TeV-PeV)
 - ✦ From AGN, GRB, SNR
- Cosmogenic neutrinos (PeV-EeV)
 - From cosmic ray interactions with CMB photons (not) detected yet)
- Production: $p + \gamma \rightarrow n + \pi^+$ $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- Detection of astrophysical neutrinos
 - Interaction with water/ice producing Cherenkov photons (shower vs tracks)
 - $\nu_{\rm e}$ CC, $\nu_{\rm T}$ CC, NC

 $u_{\mu}CC$

GZK v

10¹⁸

EeV

IceCube results

- Discovery of high-energy astrophysical neutrino flux (2013)
- Neutrino emission from blazar TXS 0506+056 (2017)
- Neutrino emission from the active galaxy NGC1068 (2022)
- Evidence of neutrinos from the Galactic plane (2023)

IceCube results

- Discovery of high-energy astrophysical neutrino flux (2013)
- Neutrino emission from blazar TXS 0506+056 (2017)
- Neutrino emission from the active galaxy NGC1068 (2022)
- Evidence of neutrinos from the Galactic plane (2023)

Conclusions

- acquire their mass?)
- the Standard Model)
- measure with precision all neutrino oscillation parameters
- Many opportunities for **Beyond SM** with neutrinos (heavy neutrinos, NSI, ...)
- Neutrino **mass** measurement is hopefully around the corner (in the lab and in cosmology)
- Majorana or Dirac neutrinos: intensive neutrinoless double beta experimental campaign trying to cover the IO range \rightarrow an important technological step will be needed to explore lower masses
- More precise **solar** and **supernova** neutrino measurements will be provided by bigger and complementary detectors
- The beginning of a golden era for **high-energy neutrino** detection (and multi-messenger astronomy)

• Neutrinos are **massive** particles - breakthrough in Particle Physics \rightarrow SM needs to be extended (how do neutrinos)

• Neutrino oscillations are still one of the most important topics/priorities in Particle and Astroparticle Physics (beyond

• Neutrino oscillations are under intense study but **next generation** of experiments with more capable detectors and powerful (anti-)neutrino beams are needed to discover CP violation, determine the neutrino mass ordering and

Conclusions

- Neutrinos are **massive** particles breakthrough in Particle Physics → SM needs the extended (how do neutrinos) acquire their mass?)
- Neutrino oscillations are still one of the most important topics/mid the Standard Model)
- Neutrino oscillations are under intense study but next remarking of experiments measure with precision all nentring to the file tion of rameters
- Many opportunities for B yon SV with neutrinos (here)
- Leas ment is hopefully aroun the corner (in the lab and in cosmology) Neutrino mass
- \rightarrow an important technological technologica
- More precise solar in signable in a signable neutrino measurements will be provided by bigger and complementary detectors
- The beginning of a golden era for high-energy neutrino detection (and multi-messenger astronomy)

Particle and Astroparticle Physics (beyond)

ith nore capable detectors and powerful (anti-)neutrino beams are needed to viscover CP violation, det riving the neutrino mass ordering and

 $\square S$, INOT, ...

• Majorana or Drac neutrinos: inter we have not follows double beta experimental campaign trying to cover the IO range

GRACIAS