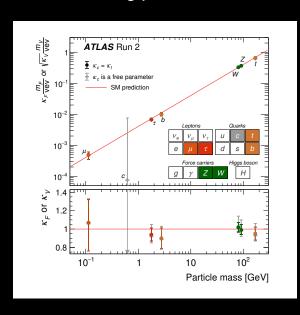
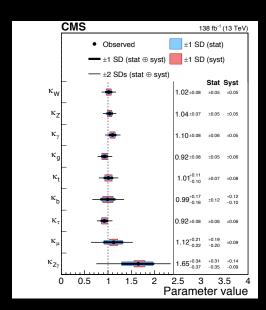
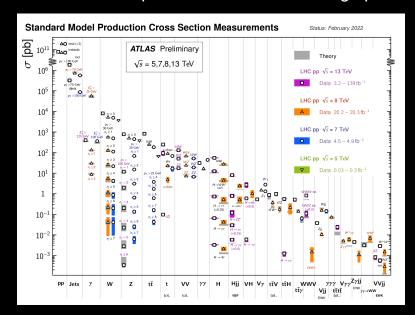

Future Colliders


Karl Jakobs
European Committee for Future Accelerators (ECFA Chair)
University of Freiburg


International Meeting on Fundamental Physics, XV CPAN Days Santander, 6th October 2023

Where do we stand today? Why do we need a new collider?

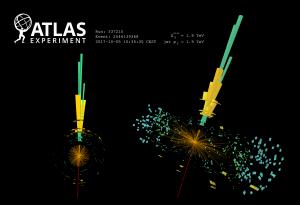
- The Higgs boson has been discovered
 - → Last missing piece of the Standard Model


4 July 2012

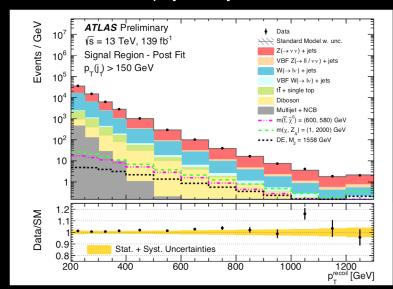
Huge progress on exploring its properties over the last ~10 years (LHC Run 1 and Run 2);

Impressive precision already reached, all measurements in agreement with the Standard Model predictions (within uncertainties)

Standard Model predictions verified with high precision



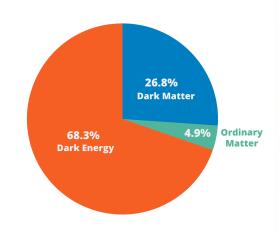
 The Standard Model provides a successful description of the data


Triumph of experiment and theory

Huge progress as well on the theory side, NNLO calculations (NNLO revolution!)

Despite interesting events ...

.. no indications of physic beyond the Standard Model

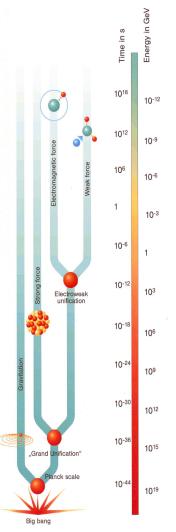

Important Open Questions

1. Mass

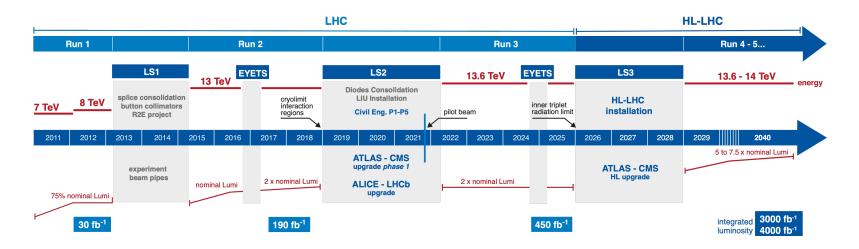
The Higgs boson exists!

Does it have the predicted properties? Why is it so light?

- * Fundamental scalar → large quantum corrections
- * "Hierarchy" or "naturalness" problem
- * Is it a fundamental particle or a composite scalar?


2. Unification

Can the different interactions be unified? How can gravity be incorporated? Why is gravity so weak?

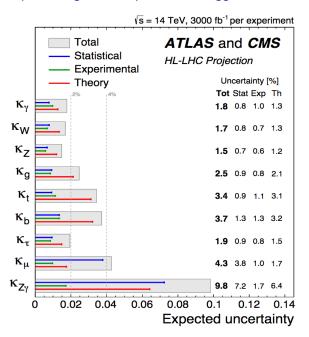

3. Structure and composition of matter

- Are there new forms of matter, e.g. supersymmetric particles?
- Are they responsible for the **Dark Matter in the Universe**?
- What is the origin of the matter-antimatter asymmetry?
- Why are there three families of fermions?
- What is the origin of neutrino masses?

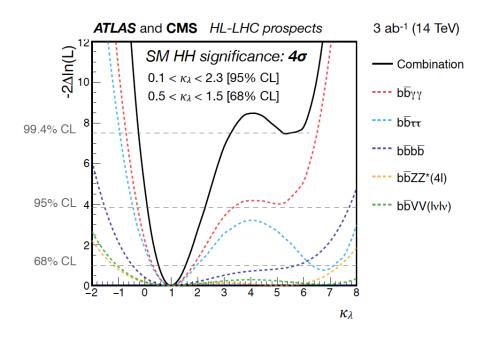
New physics required, but no clear indication of the energy scale

The near future

Luminosity Upgrade of the LHC → **High Luminosity LHC (HL-LHC)**:


→ Increase of integrated luminosity by factor of ~ 20 (→ 3000 fb⁻¹)

Major focus: - **Higgs boson**(more precise measurements, differential cross sections, EFT interpretations, Higgs self coupling)


- Direct searches for new physics (more exotic scenarios, e.g. long life times)

Expected HL-LHC sensitivity: Higgs

Precision on Higgs coupling strength modifiers κ_i (assuming no BSM particles in Higgs boson decays)

Higgs boson self-coupling?

HL-LHC:

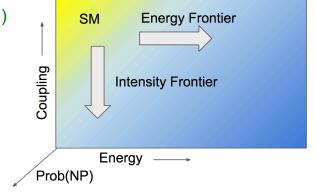
- Very significant improvement of the precision on the Higgs boson couplings (reach level of few %)
- First sensitivity on the Higgs boson self coupling ($\pm 50\%$ uncertainty)

Towards the long-term future

New physics required, but no clear indication of the energy scale

Energy Frontier → high-energy colliders remain essential;

In addition the **Intensity Frontier** needs to be explored


(e.g. search for Feebly Interacting Particles,

Neutral Heavy Leptons, Flavour anomalies,...)

No strong guidance from theory

Experiments must show the way!

Understanding the **Higgs Sector** is vital: the Higgs particle is not just "another particle"

- Profoundly different from all elementary particles discovered so far;
- The only spin-0 particle; carries a different type of "force";
- Related to the most obscure sector of the Standard Model
- Linked to some of the deepest structural questions (flavour, naturalness, vacuum, ...)

```
Every problem of the SM originates from Higgs interactions

J = \lambda H \Psi \Psi + \mu^2 IHI^2 - \lambda IHI^4 - V_0
flavour neturalness stability C.C.
```

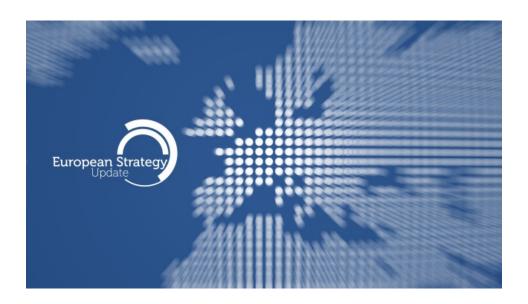
G. Giudice, CERN

- → It provides a unique door into new physics, ... and calls for a very broad and challenging experimental programme
- Precision measurements of couplings (as many generations as possible, decays via loops, ...)
- Higgs boson self coupling → Higgs potential
- Forbidden, rare and exotics decays, e.g. $H \rightarrow \tau \mu \rightarrow flavour$ structure and source of fermion masses
- Other Higgs boson properties (CP admixture?)
- Probe of compositeness
- Search for additional Higgs bosons

The outstanding questions are compelling, difficult and interrelated

- → They can only be successfully addressed through a variety of approaches
- Fabiola Gianotti, LHCP Conference 2021

- Particle colliders
- Dark matter direct and indirect searches
- Neutrino experiments
- Cosmic surveys
- Measurements of rare processes
- Dedicated searches (e.g. axions, dark-sector particles, feebly interacting particles, ...)


	rabiola Giariotti, LHCP Conference 202						
	High-E colliders	Dedicated high-precision experiments	Neutrino experiments	Dedicated searches	Cosmic surveys		
H, EWSB	×	×		×			
Neutrinos	X (V _R)		X	×	X		
Dark Matter	X	•	• • • • • • • • • • • • • • • • • • • •	x	×		
Flavour, CP, matter/antimatter	×	×	×	×	×		
New particles, forces, symmetries	×	X		×			
Universe acceleration					×		

High-energy accelerators are one of the best tools for exploration; unique in studying the Higgs boson

Needed: Precision + Energy

- (1) Scientific diversity, and the combination of complementary approaches, are crucial to explore directly and indirectly the largest range of energy scales and couplings, and to properly interpret signs of new physics to reach the goal to build a coherent picture of the underlying theory
- (2) Global coordination and optimisation of the particle physics programme is necessary to maximise the opportunities of the field, given the exciting physics questions, the cost and complexity of the projects

2020 Update of the European Strategy for Particle Physics

Update of the European Strategy for Particle Physics

2. General considerations for the 2020 update

..

Europe, through CERN, has world leadership in accelerator-based particle physics and related technologies. **The future of the field in Europe and beyond depends on the continuing ability of CERN and its community to realise compelling scientific projects.** This Strategy update should be implemented to ensure Europe's continued scientific and technological leadership.

3. High-priority future initiatives

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

Accomplishing these compelling goals will require innovation and cutting-edge technology:

- The particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;
- Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

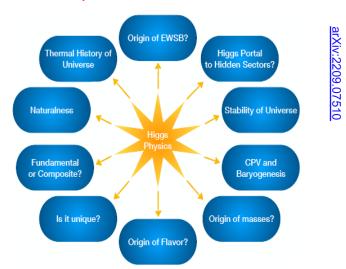
The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

US Snowmass process (2022)

For the five-year period starting in 2025:

- 1. Prioritize the HL-LHC physics program, including auxiliary experiments,
- 2. Establish a targeted e^+e^- Higgs Factory Detector R&D program,
- 3. Develop an initial design for a first-stage TeV-scale Muon Collider in the U.S.,
- 4. Support critical Detector R&D towards EF multi-TeV colliders.

For the five-year period starting in 2030:

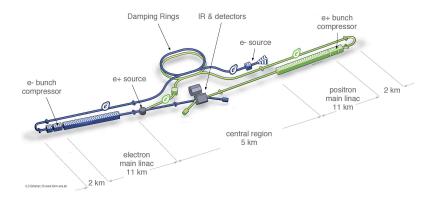

- 1. Continue strong support for the HL-LHC physics program,
- 2. Support the construction of an e^+e^- Higgs Factory,
- 3. Demonstrate principal risk mitigation for a first-stage TeV-scale Muon Collider.

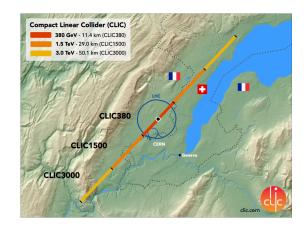
Plan after 2035:

- 1. Continuing support of the HL-LHC physics program to the conclusion of archival measurements,
- 2. Support completing construction and establishing the physics program of the Higgs factory,
- 3. Demonstrate readiness to construct a first-stage TeV-scale Muon Collider,
- 4. Ramp up funding support for Detector R&D for energy frontier multi-TeV colliders.

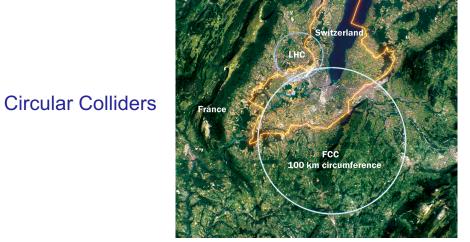
Snowmass Summary Report

 e⁺e⁻ Higgs factory as highest priority next collider re-emphasized




 In addition: prioritisation of the HL-LHC physics exploitation programme

and

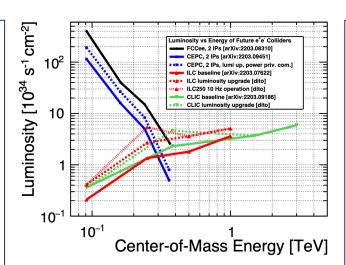

R&D towards a TeV-scale Muon Collider

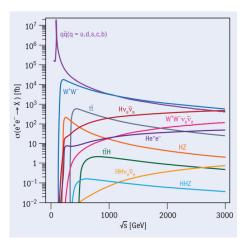
High-energy e⁺e⁻ collider projects

Linear Colliders

Injection energy 10GeV The same rings could be

used in a second stage to host a ~100 TeV pp collider

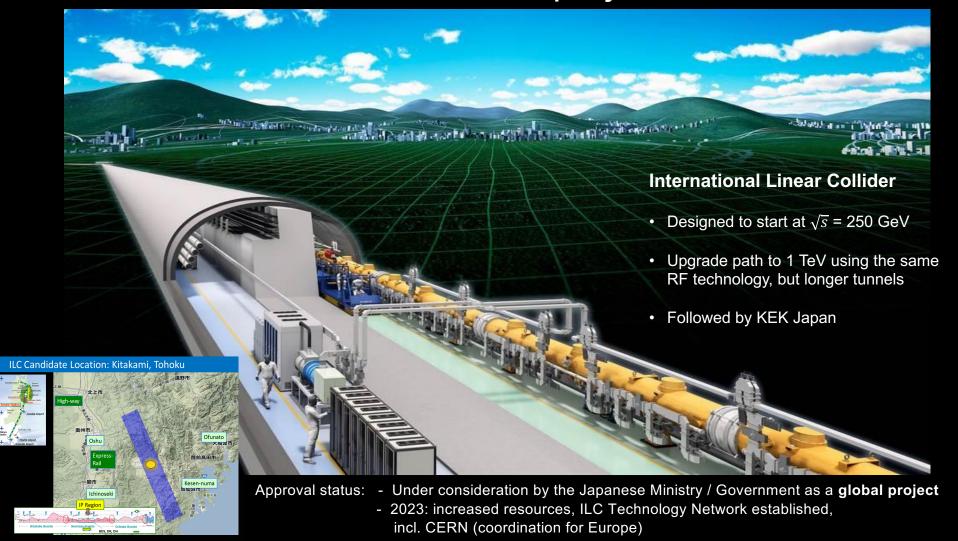


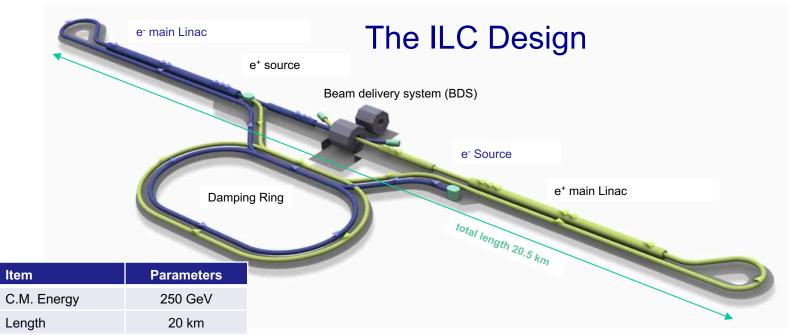

Circular or linear e⁺e⁻ colliders?

Circular e⁺e⁻ colliders

- FCC-ee, CEPC
- Circumference: 90 100 km
- High luminosity & power efficiency at low energies;
 → huge rates at Z pole (table below)
- Less luminosity at higher E_{CM} (synchrotron radiation)
- · Multiple interaction regions
- · Very clean: little beamstrahlung

per detector in e*e-	# Z	# B	#τ	# charm	# WW
LEP	4 x 10 ⁶	1 x 10 ⁶	3 x 10 ⁵	1 x 10 ⁶	2 x 10 ⁴
SuperKEKB	-	1011	1011	1011	-
FCC-ee	2.5 x 10 ¹²	7.5 x 10 ¹¹	2 x 10 ¹¹	6 x 10 ¹¹	1.5 x 10 ⁸



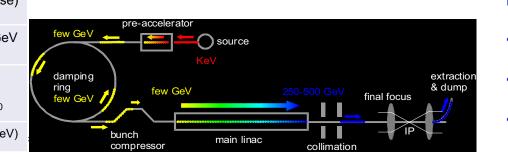


Linear e⁺e⁻ colliders

- ILC, CLIC, C³ (new idea)
- Length
 ILC: 250 GeV 1 TeV: 20.5 → 40 km
 CLIC: 380 GeV 3 TeV: 11.4 → 50 km
- High luminosity & power efficiency at high energies;
- Longitudinally spin-polarised beams
- Long-term energy upgrades possible
 - longer tunnel, same technology and/or
 - replacing accelerating structure with advanced technologies (RF cavities with higher gradients, plasma acceleration?)

Status of the ILC project

- Length
- Luminosity 1.35 x10³⁴ cm⁻²s⁻¹ Repetition 5 Hz
- Period


Beam Pulse

Power

- **Beam Current** 5.8 mA (in pulse)
- Beam size (y) at 7.7 nm@250GeV final focus SRF Cavity G. 31.5 MV/m (35 MV/m) Q_0

 $Q_0 = 1x10^{-10}$ 129 MW (250 GeV)

 $0.73 \, \text{ms}$

Key Technologies:

- Superconducting RF
- Nano-beam technology
- Positron source (polarised positrons)

Status of Key Technologies

(i) Superconducting RF

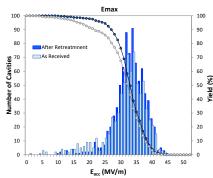
1.3 GHz, 9 cell cavity

- Capitalize on the massive developments done for light sources worldwide, in particular via the European XFEL at DESY / Hamburg
- Ongoing: Optimisation of the RF performance (surface treatment, improve efficiency in cavity production, automation of cavity cleaning, ...)

(ii) Nano Beams

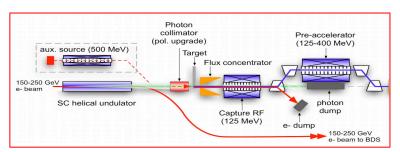
ILC final focus method established (with same optics and comparable beamline tolerances)

- ATF2 Goal: 37 nm → ILC 7.7 nm (at ILC250)

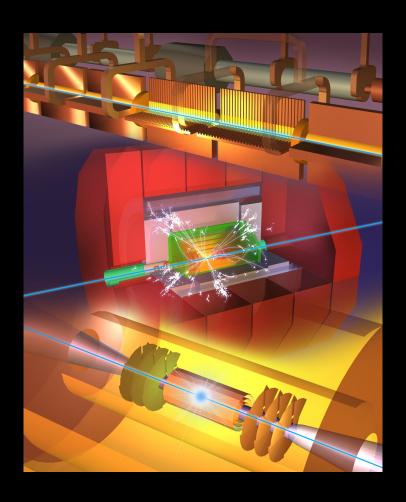

- Achieved 41 nm (2016)

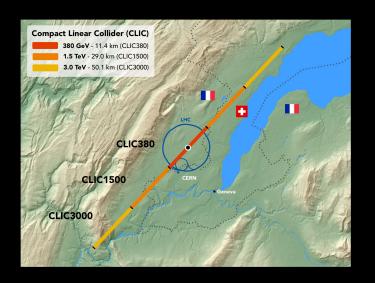
(iii) Positron Source

Undulator-driven positron source under study; Important for the production of **polarised positrons**

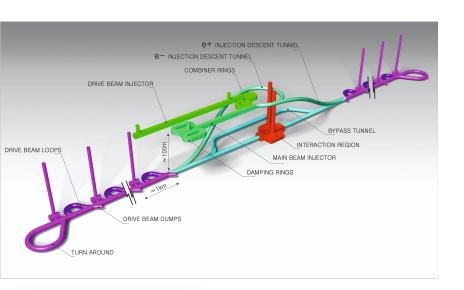


European XFEL (~800 cavities, 100 modules) ~ 10% of ILC needs




Good perf. reached on acc. gradient

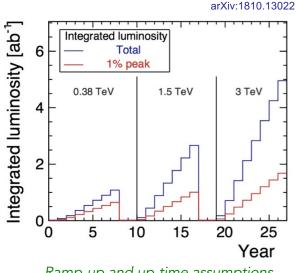
CLIC: Compact Linear Collider



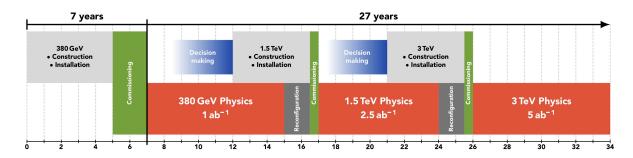
Compact Linear Collider

- Designed to start at \sqrt{s} = 380 GeV
- Upgrade path to 3 TeV
- Studied at CERN / CLIC Collaboration

The Compact Linear Collider



Accelerating structure prototype for CLIC: 12 GHz (L~25 cm)


- Timeline: Electron-positron linear collider at CERN for the era beyond HL-LHC (~2035 Technical Schedule)
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 cavities at 380 GeV)
 Achieve accelerating gradients of 72 MV/m
 → 11.4 km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- Power: 168 MW at 380 GeV, some further reductions possible
- Many technical developments have been carried out over the past decades (see backup slides)
 - → also the CLIC accelerator studies are mature
- CLIC community is preparing a Project Readiness Report (PRR) for the next ESPP (2026/27)

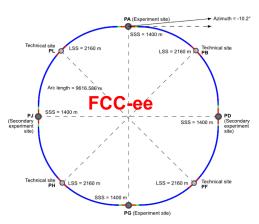
CLIC parameter and timeline

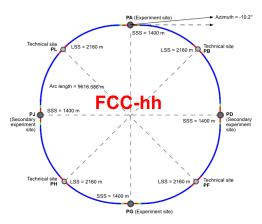
Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	\mathscr{L}	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	\mathscr{L}_{int}	fb^{-1}	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	N	10^{9}	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_{x}/σ_{y}	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\epsilon_{x}/\epsilon_{y}$	nm	900/20	660/20	660/20
Final RMS energy spread		%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

Ramp-up and up-time assumptions

Technology-driven schedule from start of construction (5 years preparation phase + 2 years initial commissioning)

FCC: Future Circular Collider



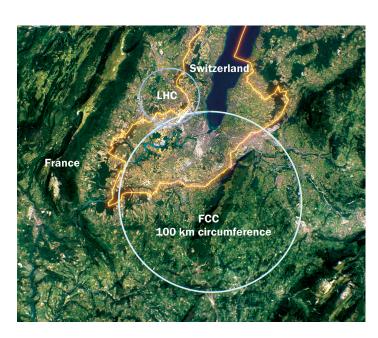

FCC integrated programme

Comprehensive long-term programme maximising physics opportunities:

- Stage 1: FCC-ee: e⁺e⁻ Higgs, electroweak & top factory at highest luminosities [91 GeV → 365 GeV]
 Build on large progress made at circular e⁺e⁻ colliders over the past decades → reach luminosities beyond 10³⁴ cm⁻² s⁻¹
- Stage 2: FCC-hh: 100 TeV pp collider, energy frontier machine (in addition: eh and ion options)
- Common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC project start is coupled to HL-LHC programme (→ start operation of FCC-ee around 2048)

2029 - 2042

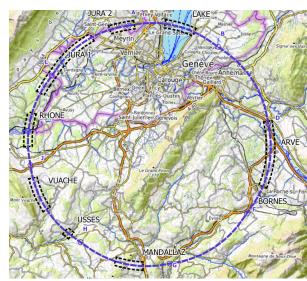
2048 - 2065


2070 - 2095

FCC Feasibility Study

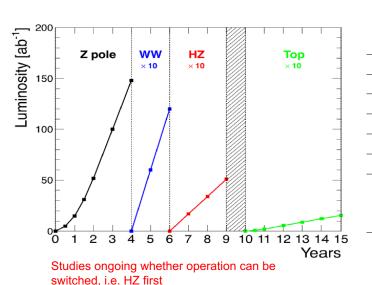
Explore the feasibility for an integrated FCC-ee / FCC-hh programme at CERN

- Study and its organisational structure have been approved by CERN Council in June 2021
- Report to be released by end of 2025
 - → Basis for a decision at the next Strategy Meeting 2026/27 (mid-term report by end of 2023)
- Major deliverables and milestones
 - Understand the realisation (geology, infrastructure, political, ...)
 - Collider design, with clear focus on FCC-ee
 - Timeline and cost for FCC-ee
 - Contributions from outside CERN
 - Physics case and experiment design
 - Sustainable operational model for the colliders and experiments (environmental aspects, energy efficiency, ...)
- Address technical issues of Hadron Collider
 Large technological challenges, 16 T superconducting magnets not yet available



FCC Feasibility Study

Explore the feasibility for an integrated FCC-ee / FCC-hh programme at CERN


- Study and its organisational structure have been approved by CERN Council in June 2021
- Report to be released by end of 2025
 - → Basis for a decision at the next Strategy Meeting 2026/27 (mid-term report by end of 2023)
- Major deliverables and milestones
 - Understand the realisation (geology, infrastructure, political, ...)
 - Collider design, with clear focus on FCC-ee
 - Timeline and cost for FCC-ee
 - Contributions from outside CERN
 - Physics case and experiment design
 - Sustainable operational model for the colliders and experiments (environmental aspects, energy efficiency, ...)
- Address technical issues of Hadron Collider
 Large technological challenges, 16 T superconducting magnets not yet available

Converging on a "low risk" placement with circumference of 91 km

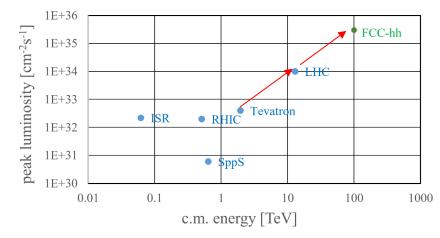
(4-fold symmetry, 8 surface points, 2-4 e⁺e⁻ experiments)

FCC-ee Running scenarios and Physics Yield

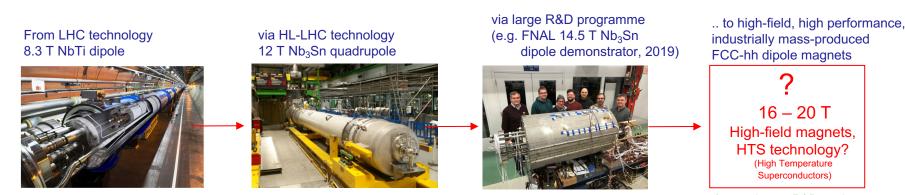
Working point	Z years 1-2	Z, later	WW	HZ	tt	-	(s-channel H)
$\sqrt{s} \; (\mathrm{GeV})$	88, 91, 94		157, 163	240	340-350	365	$m_{ m H}$
${\rm Lumi/IP}\ (10^{34}{\rm cm}^{-2}{\rm s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)
$Lumi/year (ab^{-1}, 2 IP)$	24	48	6	1.7	0.2	0.34	(7)
Physics goal (ab^{-1})	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
				$10^6 \; {\rm HZ} \; +$	$10^6 \ \mathrm{t} \mathrm{\overline{t}}$		
Number of events	5×10^{1}	12 Z	10^8 WW	$25 \text{k WW} \rightarrow \text{H}$	+200k H	\mathbf{Z}	(6000)
					+50k W	$W \to H$	

- Huge potential at Z peak: 5 · 10¹² events (10⁵ times LEP)
- WW and $t\bar{t}$ threshold scan (\rightarrow precision mass measurements of m_W and m_t)
- 10⁶ HZ events (at 240 GeV) + 25.000 Hvv events (via W fusion)
- s-channel run at \sqrt{s} = m_H considered \rightarrow may give access to electron Yukawa coupling
- Precise mass scale; high precision of beam energy due to resonant depolarisation (δE (91 GeV) ~ 100 keV, δE (350 GeV) ~ 2 MeV)

Dedicated run to measure the **electron Yukawa coupling** via s-channel e⁺e⁻ → H production


arXiv:2203.06520

Under study!

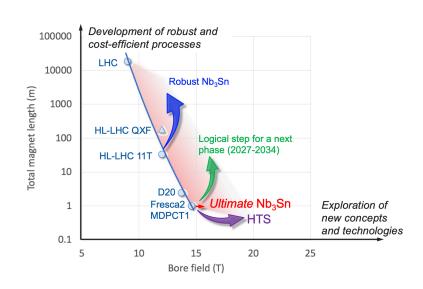

Needs strong monochromatisation of the beams

Stage 2: FCC-hh

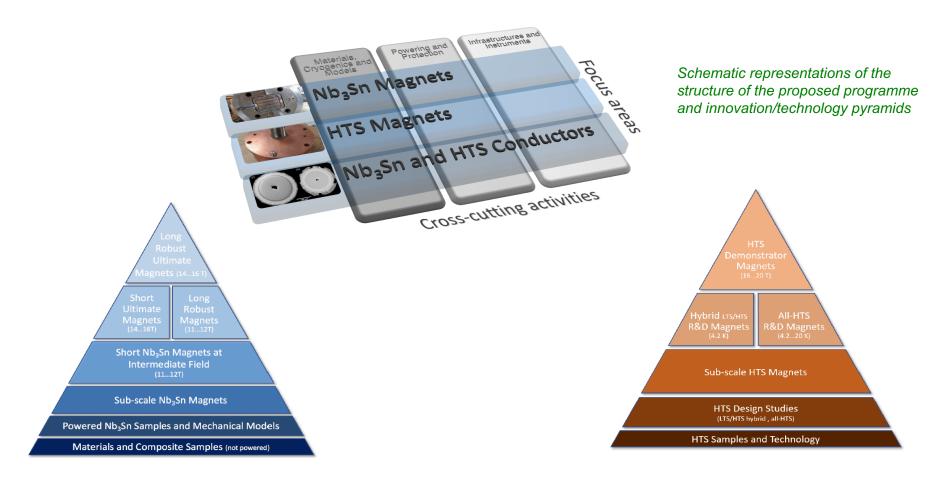
- High energy frontier exploration machine, reaching 100 TeV pp collisions
- Performance increase by an order of magnitude in energy and luminosity w.r.t. LHC
- Planned to accumulate ~20 ab⁻¹ per experiment, over 25 years

- Large challenges: High bending power → high-field magnets with field strength of 16 20 T;
 - Costs (linked to magnets)

→ accelerator R&D roadmap


High-field Superconducting Magnets

- Key technology for future accelerators (hadron colliders, muon colliders, neutrino beams, ...)
- To reach the required field strength of 16 20 T for FCC-hh, new technologies have to be established and brought into industrial production


(Present candidates: Nb₃Sn and High-Temperature Superconductors (HTS), ...)

Accelerator Roadmap:

- Encompass Nb₃Sn and HTS (REBCO) developments
 - Demonstrate Nb₃Sn magnet technology for large-scale deployment
 - Demonstrate the suitability of HTS for accelerator magnet applications
- "Vertically integrated" approach to R&D
 - Development of all aspects from conductors to cables to magnets to systems
 - Emphases: full system optimisation, fast turnaround for R&D, modelling

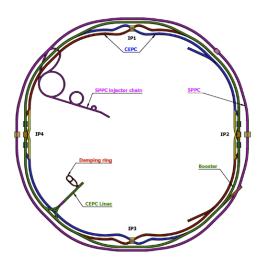
High-field Superconducting Magnets

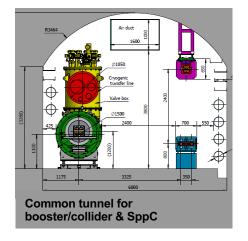
CEPC: Circular Electron-Positron Collider in China

- Stage 1: CEPC: Higgs / el.weak / top factory [91 GeV → 360 GeV]
- Stage 2: SppC: pp energy-frontier machine ~100 TeV (integrated programme, similar to FCC)

Approval status:

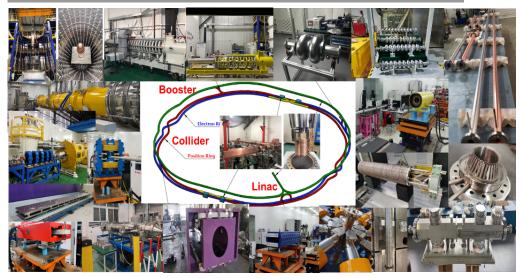
- TDR in preparation, incl. cost review
- Aiming for approval in next 5-year plan (2025)
- Ranked 1st in Chinese HEP preselection


CEPC layout and running scenarios


100 km circumference: Optimum for total cost

- Shared tunnel: Compatible design for CEPC and SppC (Super proton-proton Collider)
- Switchable operation: Higgs, W/Z, top (lattice optimisation for all energies)
- Accelerator complex comprised of a Linac,
 100 km booster and collider rings

- CEPC will commence its operation with a focus on Higgs boson physics as top priority
 - → Large samples of Higgs bosons during initial phase $(2.6 4.3) \cdot 10^6$ events collected over 10 years
 - → Large samples of Z bosons: (2.5 4.1) · 10¹² events collected later (details in backup material)

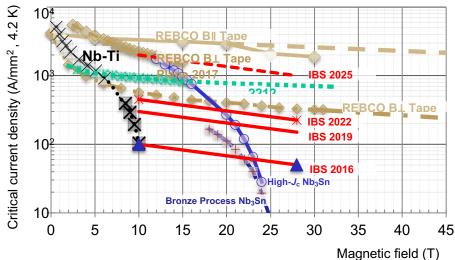

Yifang Wang, CEPC Meeting, UK, June 2023

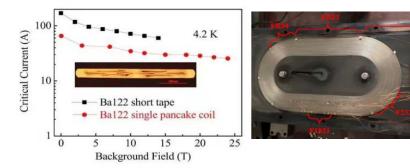
Key technology readiness

Huge R&D and prototyping programme ongoing

Key technology R&D spans all components needed for CEPC

Will be ready for construction by 2026


Yifang Wang, CEPC Meeting, UK, June 2023

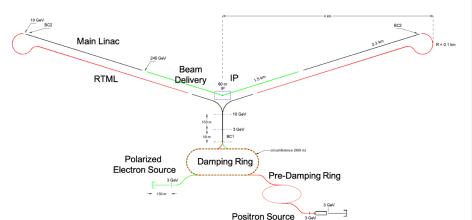

Specification Met Prototype Manufact	
Accelerator	Fraction
✓ Magnets	27.3%
Vacuum	18.3%
RF power source	9.1%
Mechanics	7.6%
✓ Magnet power supplies	7.0%
✓ SC RF	7.1%
✓ Cryogenics	6.5%
Linac and sources	5.5%
✓ Instrumentation	5.3%
Control	2.4%
Survey and alignment	2.4%
Radiation protection	1.0%
✓ SC magnets	0.4%
✓ Damping ring	0.2%

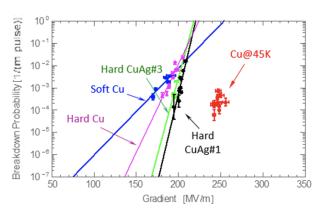
R&D for High-Field Superconductors for SppC

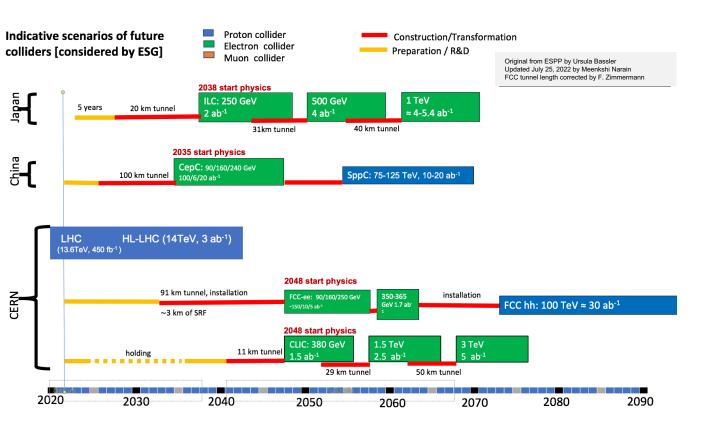
Yifang Wang, CEPC Meeting, UK, June 2023

- Iron-based superconducting materials are very promising for high-field magnets
 - Isotropic
 - May go to very high field
 - Raw materials are cheap
 - Metal, easy for production
- Technology spin-off can be enormous
- Major R&D goals
 - High J_c : > 1000 A/mm²@4.2K
 - Long cable: > 1000 m
 - Low cost: < 5 \$/kA⋅m
- A collaboration formed in 2016 by IHEP, IOP, IOEE, SJTU, etc., and supported by CAS
- World first: 1000 m IBS cable, IBS coil,
 → magnet

1st iron-based superconducting solenoid coil at 24T

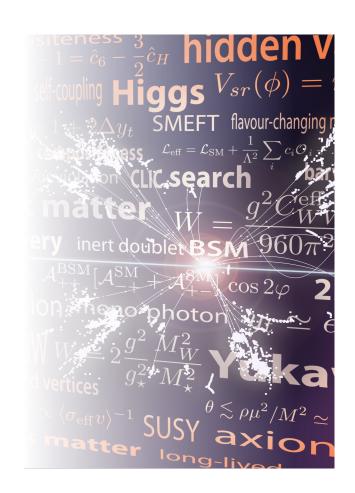

A new, recent proposal: Cold Copper Collider C³


- Proposal was discussed in US Snowmass process <u>arxiv:2110.15800</u>
- Based on observation that cryogenic temperatures elevate the RF performance (larger gradients)
 - Linked to: increased material strength for higher gradients
 - increased electrical conductivity
- Operation at 77 K (liquid nitrogen temperature) can be considered


- 8 km footprint for \sqrt{s} = 250 / 550 GeV requires gradients of 70 / 120 MV/m Possible site: **Fermilab**
- Large portions of the accelerator complex are compatible with ILC technologies (Beam delivery, damping ring and injectors will be optimised with ILC or CLIC as baseline)

Collider	C^3	C^3
CM Energy [GeV]	250	550
Luminosity $[x10^{34}]$	1.3	2.4
Gradient [MeV/m]	70	120
Effective Gradient [MeV/m]	63	108
Length [km]	8	8
Num. Bunches per Train	133	75
Train Rep. Rate [Hz]	120	120
Bunch Spacing [ns]	5.26	3.5
Bunch Charge [nC]	1	1
Crossing Angle [rad]	0.014	0.014
Site Power [MW]	~ 150	~175
Design Maturity	pre-CDR	pre-CDR

Timelines



Comments:

- e⁺e⁻ timelines are limited by approval processes
- CEPC and ILC projects need to pass approval processes in the near future to maintain these schedules
- CERN projects are linked to completion of the HL-LHC
- hh timelines are limited by technology issues, costs, proceeding e⁺e⁻ projects

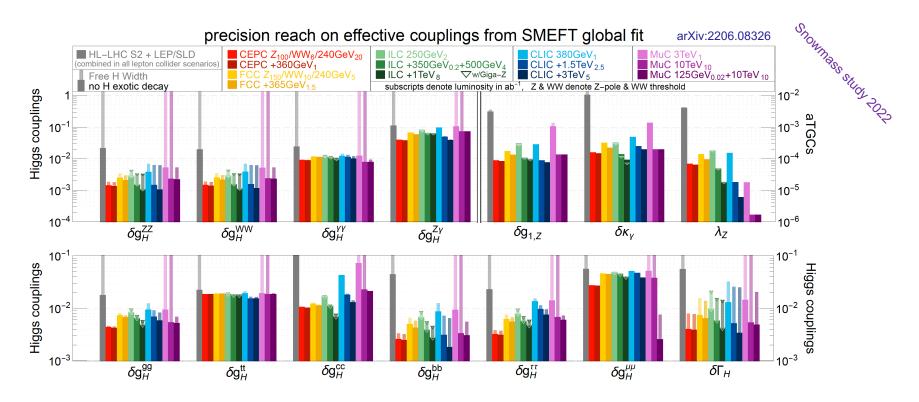
Physics Potential

- a few selected topics -

Precision on Higgs boson couplings

Precision on Higgs coupling strength modifiers κ_i

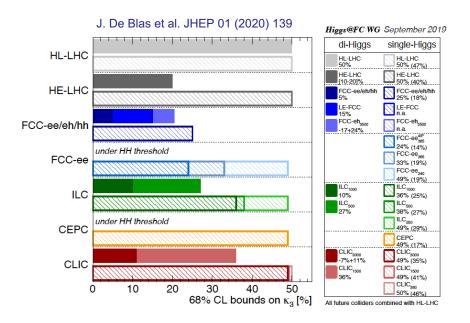
(assuming no BSM particles in Higgs boson decays)


J. De Blas et al. J	HEP 01	(2020)	139 (
---------------------	--------	--------	-------

_											
	1					HL-LH	HL-LHC+				
	kappa-3 scenario	ILC ₂₅₀	ILC ₅₀₀	$ILC_{1000} \\$	CLIC ₃₈	CLIC ₁₅₀₀	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
_	κ_W [%]	1.0	0.29	0.24	0.73	0.40	0.38	0.88	0.88	0.41	0.19
	$\kappa_{\!Z}[\%]$	0.29	0.22	0.23	0.44	0.40	0.39	0.18	0.20	0.17	0.16
	$\kappa_{\!\scriptscriptstyle g}[\%]$	1.4	0.85	0.63	1.5	1.1	0.86	1.	1.2	0.9	0.5
	κ_{γ} [%]	1.4	1.2	1.1	1.4*	1.3	1.2	1.3	1.3	1.3	0.31
*	$\kappa_{Z\gamma}$ [%]	10.*	10.*	10.*	10.*	8.2	5.7	6.3	10.*	10.*	0.7
	κ_c [%]	2.	1.2	0.9	4.1	1.9	1.4	2.	1.5	1.3	0.96
*	κ_t [%]	3.1	2.8	1.4	3.2	2.1	2.1	3.1	3.1	3.1	0.96
	κ_b [%]	1.1	0.56	0.47	1.2	0.61	0.53	0.92	1.	0.64	0.48
¥	κ_{μ} [%]	4.2	3.9	3.6	4.4*	4.1	3.5	3.9	4.	3.9	0.43
	κ_{τ} [%]	1.1	0.64	0.54	1.4	1.0	0.82	0.91	0.94	0.66	0.46
-	BR _{inv} (<%, 95% CL)	0.26	0.23	0.22	0.63	0.62	0.62	0.27	0.22	0.19	0.024
	BR_{unt} (<%, 95% CL)	1.8	1.4	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.

$$\begin{split} \sigma_{\rm ZH} \times \mathcal{B}({\rm H} \to X \overline{X}) &\propto \frac{g_{\rm HZZ}^2 \times g_{\rm HX\overline{X}}^2}{\Gamma_{\rm H}} \\ \\ \sigma_{{\rm H}\nu_{\rm e}\overline{\nu}_{\rm e}} \times \mathcal{B}({\rm H} \to X \overline{X}) &\propto \frac{g_{\rm HWW}^2 \times g_{\rm HX\overline{X}}^2}{\Gamma_{\rm H}} \end{split}$$

- Large improvement with future e⁺e⁻ colliders (compared to (HL)-LHC)
- Powerful ability to measure Higgs boson production without any assumptions on its decay;
- Higgs boson width within a few percent (via ZH cross section)
- Comparable precision between different e⁺e⁻ colliders at early stage
- Complementarity to hadron collider ★ → ultimate precision (sub %) from FCC-hh

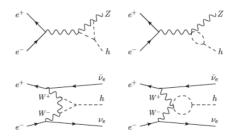

Higgs and anomalous couplings (SMEFT interpretation)

- All e⁺e⁻ colliders show comparable performance (higher luminosities partly compensated by beam polarisation)
- Several couplings well below 1% level: Z, W, g, b, τ

Others at ~ 1% level: γ , c Comparable precision as HL-LHC for: γ , t, μ

Precision on Higgs boson self coupling

Precision on λ parameter:

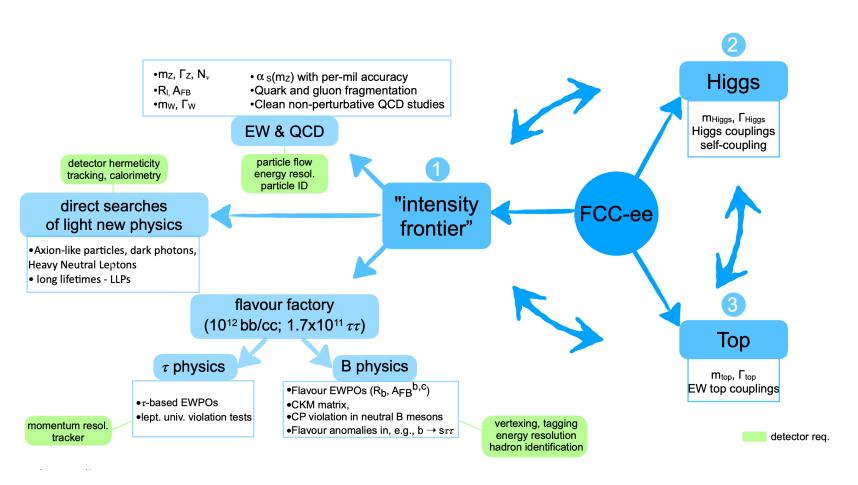

HL-LHC: $\pm 50\%$ ILC (1 TeV): $\pm 10\%$

CLIC (3 TeV): $\pm (7-10)\%$

FCC-ee: $\pm 35\%$ FCC-hh: $\pm 5\%$

Results confirmed in Snowmass study arXiv:2211.11084

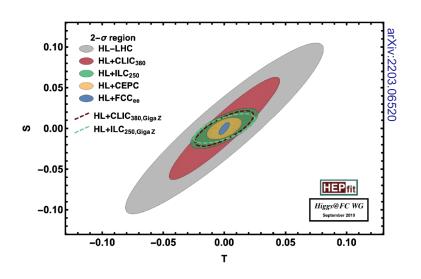
- At low-energy lepton collider, no direct di-Higgs production possible
 - → sensitivity via loop effects

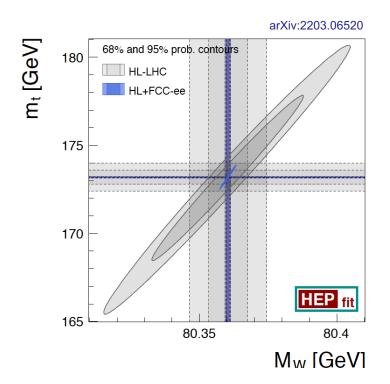


Precise cross section measurements required at 240 and 360 GeV

 Higher sensitivity can be reached at high-energy lepton colliders (ILC, CLIC)

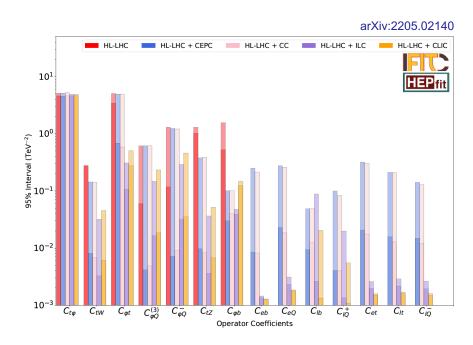
FCC-ee (and CEPC) Z-physics programme


Christophe Grojean, FCC week 2022



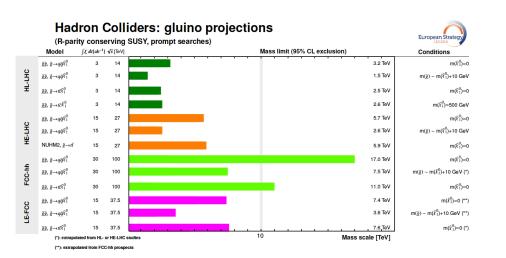
Precision of electroweak observables

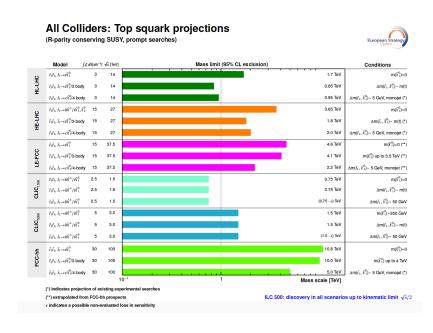
FCC-ee: Impressive precision on el.weak observables:


 $\begin{array}{l} \delta m_Z \sim 100 \; keV, \quad \delta \Gamma_Z \sim 25 \; keV \\ \delta m_W < 500 \; keV \; (\text{from WW threshold scan}) \\ \delta m_t \quad \sim \!\! 45 \; MeV \; (\text{from } t\bar{t} \; \text{threshold scan}) \\ \text{(more numbers in backup slides)} \end{array}$

- Importance of el.weak precision:
 - (i) Improve sensitivity to new physics (e.g. $\delta S \sim 10^{-2} \rightarrow M \sim 70 \text{ TeV}$)
 - (ii) Reduce parametric uncertainties for other measurements, global fits

Detailed Top-Quark studies

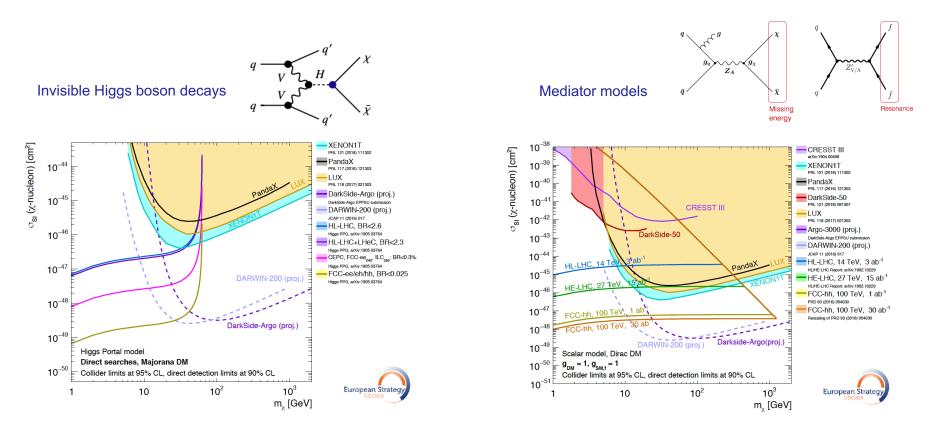

Expected precision on Wilson coefficients for HL-LHC, and combined with various e⁺e⁻ colliders


Example for power of high-energy e⁺e⁻ colliders:

SMEFT fit to top quark observables

→ Input from high-energy e⁺e⁻ colliders and power of polarised beams lift degeneracies between operators

Search for new Physics



 High-energy hadron colliders have the largest reach for strongly produced gluinos, squarks, in particular also top-squarks

Mass range > 10 TeV can be reached

Dark Matter: complementarity between Direct Searches and Future Colliders

 Future collider experiments are well suited to explore the low mass region, complementary to Direct Detection experiments;

Costs

• ILC 250 GeV: 6 BCHF (incl. tunnel 1.1 BCHF)

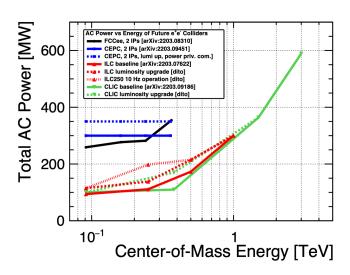
CLIC 380 GeV: 6 BCHF

3000 GeV: +11 BCHF (if 380 GeV collider is extended, standalone 18 BCHF)

• FCC-ee: 10.7 BCHF (incl. tunnel 5.4 BCHF)

- All costs estimated in a traditional European way (no personnel costs of institutes / laboratories included);
- Numbers taken from 2020 ESPP, improved estimates (reduced uncertainties) upcoming (Estimates agree well with recent numbers calculated in US Snowmass study*, based on empirical cost model encompassing many parameters, based on experience from construction of previous colliders)

^{* &}quot;On the feasibility of future colliders: report of the Snowmass'21 Implementation Task Force" JINST 18 (2023) P05018 [arXiv: 2208.06030]


Power consumption

Proposal Name	Power Consumption	Size	Complexity	Radiation Mitigation	
FCC-ee (0.24 TeV)	290	91 km	I	I	
CEPC (0.24 TeV)	340	100 km	I	I	arXiv:
ILC (0.25 TeV)	140	20.5 km	I	I	
CLIC (0.38 TeV)	110	11.4 km	II	I	2208.
					œ
ILC (3 TeV)	~400	59 km	II	II	160
CLIC (3 TeV)	~550	$50.2~\mathrm{km}$	III	II	.06030

Numbers on power consumption and size quoted in collider proposals;

Categories of power consumption, size, complexity and required radiation mitigation as ranked in the Snowmass study;

(colour scheme: lighter to darker meaning lower to higher risk)

These power consumptions are significant!

With standard running scenario every 100 MW correspond to an energy consumption of ~0.6 TWh (as reference: CERN's yearly consumption today: 1.2 TWh)

→ Further power optimisation is essential!

e.g. technical developments targeting higher efficiency klystrons and RF systems, RF cavity design and optimisation, as well as magnets (operation at higher temperatures?)

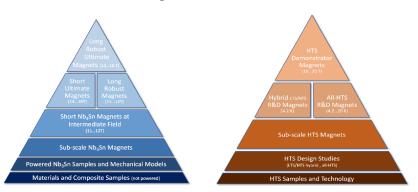
CERN is well aware and studies in these directions are ongoing (e.g. see recent seminar by R. Losito https://indico.cern.ch/event/1317615/)

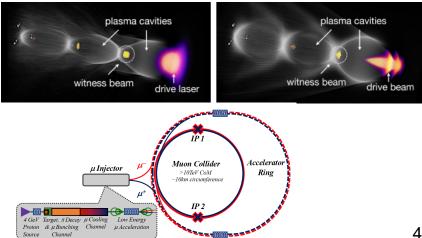
Research and Development on AcceleratorTechnologies

From the European Strategy:

Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders. It is also a powerful driver for many accelerator-based fields of science and industry.

The technologies under consideration:

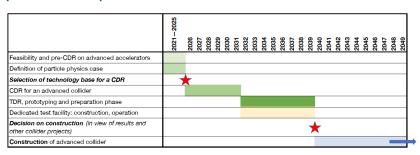

High-field magnets, high-temperature superconductors

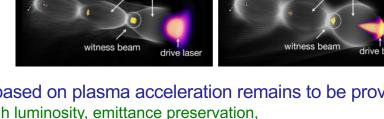

Plasma / Laser acceleration

Bright muon beams (→ Muon collider)

Energy recovery linacs

+ High-gradient RF structures




High-gradient Plasma and Laser Acceleration

- Novel high-gradient accelerators have demonstrated acceleration of electrons with E-field strength of 1 to >100 GeV/m
- Potential for significant reduction is size and, perhaps, cost of future accelerators, however, feasibility of a collider based on plasma acceleration remains to be proven Key challenges: acceleration of bunch charge sufficient to reach high luminosity, emittance preservation, staged designs of multiple structures

By next strategy: A feasibility and pre-conceptual design report, i.e. evaluate the potential and performance reach for colliders, plus four experimental demonstrations

plasma cavities

PLASMA AND LASER ACCELERATORS

Accelerator R&D Roadmap Pillars

FEASIBILITY, PRE-CDR STUDY

Scope: 1st international, coordinated study for self-consistent analysis of novel technologies and their particle physics reach, intermediate HEP steps, collider feasibility, performance, quantitative cost-size-benefit analysis

Concept: Comparative paper study (main concepts included) **Milestones**: Report high energy

e⁻ and e⁺ linac module case studies, report physics case(s) *Deliverable*: Feasibility and pre-CDR report in 2025 for European, national decision makers

TECHNICAL DEMONSTRATION

Scope: Demonstration of critical feasibility parameters for e⁺e⁻ collider and 1st HEP applications

Concept: Prioritised list of R&D that can be performed at existing, planned R&D infrastructures in national, European, international landscape

Milestones: High-rep rate plasma module, high-efficiency module with high beam quality, scaling of DLA/THz accelerators

Deliverable: Technical readiness level (TRL) report in 2025 for European, national decision makers

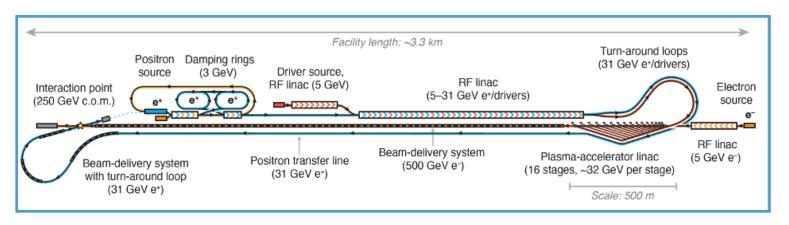
INTEGRATION & OUTREACH

plasma cavities

Synergy and Integration: Benefits for and synergy with other science fields (e.g. structural biology, materials, lasers, health) and projects (e.g. EUPRAXIA, ...)

Access: Establishing framework for well-defined access to distributed accelerator R&D landscape

Innovation: Compact accelerator and laser technology spin-offs and synergies with industry


Training: Involvement and education of next generation engineers and scientists

A new plasma-based proposal

Hybrid, Asymmetric, Linear Higgs Factory (HALHF)

arXiv:2303.10150

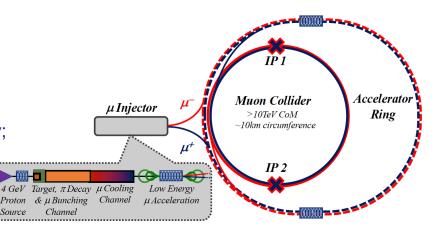
Beam-driven plasma-wakefield acceleration for electrons (very high gradients, 1.2 GV/m)
 + conventional RF acceleration to low-energy for positrons (31.5 GeV e⁺, 500 GeV e⁻)

First studies on detector / physics estimate ~10 years for R&D for plasma wakefield part

"HALHF cannot be built tomorrow: many unsolved problems remain. The major challenge is to produce plasma accelerators with the characteristics required. We believe that the HALHF concept should act as a spur to the improvement of specific plasma-acceleration techniques.... The necessary R&D should be vigorously pursued as soon as possible."

Muon Collider

 Potentially interesting path to realise high-energy lepton colliders, however, the muon-collider technology must overcome several significant challenges

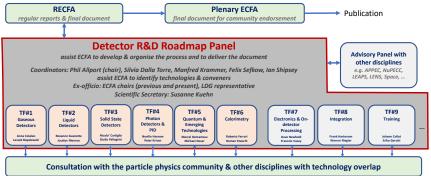

Advantages: - luminosity / beam power improves with energy;

- compact collider

Challenges: muon brightness, ionisation cooling, neutrino radiation, magnets & RF, machine detector interface, beam background...

Significant progress over the past years, but still a lot to demonstrate

- Roadmap Objectives: again focussed on the "plausibility case"
 - → Examine the key technical barriers and cost drivers before the next strategy update
 - → Planning towards a muon beam demonstrator


ECFA Roadmap on Detector R&D

- As suggested by the 2020 Update on the European Strategy a Roadmap for Detector R&D has been developed;
 Released at the end of 2021: https://cds.cern.ch/record/2784893
- The implementation of the roadmap foresees the formation of Detector R&D Collaborations (DRDs) at CERN;
 One for each of the six technology areas + electronics
- Five proposals have been submitted and are under review by the newly established Detector R&D Committee (DRDC)
 - DRD1: gaseous detectors
 - DRD2: liquid detectors
 - DRD3: solid state detectors
 - DRD4: particle identification and photon detection
 - DRD6: calorimeters

DRD5 (quantum, emerging technologies) and DRD7 (electronics, transversal activity) will submit proposals by the end of this year

(later timescale due to: internal coord. (DRD5), coordination with other DRDs (DRD7))

- DRDC has been set up and is complete: http://committees.web.cern.ch
- Recommendations on approval are expected to be issued by the DRDC early December
 - → Final decision on approval by the CERN Research Board shortly after
- Start-up of new Collaborations in January 2024;
- During 2024 Memoranda of Understanding with Funding Agencies are expected to be signed.

Funding-agency involvement is planned via RRB-like meetings (Details are still under discussion with CERN management)

Detector R&D Committee (DRDC)

	,		
BERGAUER, Thomas	HEPHY, Vienna, Chairperson		
TROSKA, Jan	CERN, Scientific Secretary		
Members - Referees			
BENTVELSEN, Stan	NIKHEF		
BRESSLER, Shikma	Weizmann Institute of Science		
BUDKER, Dimitry	Helmholtz Institute Mainz and Johannes Gutenberg University		
FORTY, Roger	CERN		
GEMME, Claudia	INFN and University, Genoa		
GIL BOTELLA, Ines	CIEMAT		
MERKEL, Petra	Fermilab		
PESARESI, Mark	Imperial College		
SERIN, Laurent	IJCLab - Laboratoire de physique des 2 infinis		
Members Ex-officio			
ALLPORT, Phil	ECFA Detector Panel (EDP) Co-Chair		
CONTARDO, Didier	ECFA Detector Panel (EDP) Co-Chair		

Detector R&D Roadmap: General Strategic Recommendations

- GSR 1 Supporting R&D facilities
- GSR 2 Engineering support for detector R&D
- GSR 3 Specific software for instrumentation
- GSR 4 International coordination and organisation of R&D activities
- GSR 5 Distributed R&D activities with centralised facilities
- GSR 6 Establish long-term strategic funding programmes
- GSR 7 Blue-sky R&D
- GSR 8 Attract, nurture, recognise and sustain the careers of R&D experts → ECFA Training Panel
- GSR 9 Industrial partnerships
- GSR 10 Open Science

ECFA-LDG Working group to address the remaining General Strategic Recommendations has started its work

Chairs: Stan Bentvelsen (Nikhef) and Marko Mikuz (Ljubljana)

Conclusions on Future Colliders

- High-energy future colliders will play a key role in the exploration of crucial fundamental questions of physics
- Consensus:
 - Exploration of the Higgs sector is vital
 - To be addressed with an e⁺e⁻ collider in a first stage

Mature options for the realisation of such a collider exist: CLIC, FCC-ee, ILC, CEPC, (C³)

Long timescales → approval process must converge soon! (next ESPP in 2026/27?, convergence in other areas of the world?)

- Longer-term options: High-energy Hadron Collider (FCC-hh, SppC) or a Muon Collider For both significant R&D is required and will be pursued!
- Further R&D on accelerator technologies and development of innovative approaches are vital (energy recovery linacs, plasma/laser acceleration, ...)

Conclusions on Future Colliders

- Important for the realisation of future colliders:
 - * Convince decision makers of the incredible physics case and of the vital role of high-energy colliders
 - → more efforts needed
 - * Broad support within the HEP community is needed!
 - * Continue optimisation efforts on power reduction!

Acknowledgements: Huge thanks for valuable discussions and sharing of slides to: Shoji Asai, Michael Benedikt, Jorgen D'Hondt, Christophe Grojean, Karsten Köneke, Jenny List, Daniel Schulte, Steinar Stapnes, Caterina Vernieri, Yifang Wang and Frank Zimmermann, ... and those I have forgotten.

Brief update on ECFA e⁺e⁻ activities

2nd ECFA workshop

- Hosted by INFN Napoli & Univ. Napoli
- Workshop has been announced to the community (also via ILC / CLIC / FCC communities, US, ...)

Registration is open

Programme will include plenary and parallel sessions

Strong focus is put on on high-priority topics, lot of room for discussions

https://agenda.infn.it/event/34841/