

First full β-strength measurement with DTAS across N=126 at FAIR phase-0

David Rodríguez García

On behalf of DESPEC collaboration

Vniver§itat dğValència

XV CPAN DAYS, 2-4 October 2023, Santander

Aim of the experiment

- Site for the astrophysical r-process is still uncertain
- Nuclear input data is also uncertain: lack of experiments
- In particular data for the 3rd r-process peak (~N=126)
- Benchmarking β -strength theoretical models used for $T_{1/2}$ and P_n prediction on r-process calculations
- Using Total Absorption Gamma-ray Spectroscopy (TAGS) to benchmark directly the β -strength (and not the T_{1/2} and P_n)

T_{1/2} and P_n derived from S_β (β-strength) calculations:

$$\frac{1}{T_{1/2}} = \int_{0}^{Q_{\beta}} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) dE_{x} \qquad S_{\beta}^{th}(E_{x}) = \frac{1}{D} \frac{g_{A}^{2}}{g_{V}^{2}} \frac{1}{2I_{x} + 1} \left| \left\langle f \right\| M_{\lambda \pi}^{\beta} \right\| i \right\rangle \right|^{2}$$

$$P_{n} = T_{1/2} \int_{S_{n}}^{Q_{\beta}} \frac{\Gamma^{n}(E_{x})}{\Gamma^{tot}(E_{x})} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) \cdot dE_{x} \qquad S_{\beta}^{exp}(E_{x}) = \frac{I_{\beta}(E_{x})}{T_{1/2}} \int_{T_{1/2}}^{Q_{\beta}} \frac{\Gamma(E_{x})}{I_{\beta}(E_{x})} TAGS$$

S505 - Experimental Set-up at S4

Spokepersons: Jose Luis Tain, Ana Isabel Morales, Enrique Nacher

Primary beam: ²⁰⁸Pb Energy: **1000 MeV/u** Goal: ²⁰⁷Hg, ²⁰⁴⁻²⁰⁶Au, ^{203,204}Pt ²⁰³Pt, ²⁰⁵Au isomer Intensity: ~**10**⁹ ppb Spill on/off: **1.6/2.2 s**

Stripper

Beam

Target

		207Hg 2.9m 4.6MeV (9/2+)
204Au 39.8s 4.0MeV (2-)	205,205mAu 32.5/6s 3.5/4.4MeV (3/2+,11/2-)	206Au 45s 6.7MeV (?)
203,203mPt 22s/12s 3.5MeV (1/2-,?)	204Pt 16s 2.7MeV 0+	

TPC24

S2 Slits SC21

DTAS gamma-calorimeter, narrow AIDA implant-decay detector of the DESPEC experiment, 2 bPlast and 2 LOAX-HPGe detectors

S505 DACQ Scheme

Five independent
 DACQs: FRS, AIDA,
 DTAS, LOAX &
 βPLAS

Common White Rabbit Time Stamping

DTAS DACQ WR implementation*

*Thanks to developments made at Chalmers Unv. Tech./GSI

FRS

PID at FRS: Bp-ToF-ΔE method

Ion identification combining information for each ion, on magnetic rigidity Bp in the dipoles, the time-of-flight between detectors in the spectrometer flight path, and the energy loss in suitable "thin" detectors

FRS Calibrations – MUSIC41-Eloss vs MUSIC42-Eloss

Drift correction over the time

MUSIC41 vs MUSIC42 Eloss

Temporal & position dependence correction

FRS Calibrations – A/Q and ΔE_Deg

AIDA

<u>Rates</u>

Up: implants, Down: decays. Green: DSSD0, Blue: DSSD1

Very high rate in the decays. Due to noise?

What did we try to improve the signal to noise ratio??:

1)Increase threshold

2)Condition in the multipicity of the strips in the event (nx, ny) i. nx, ny < 11 ii. nx, ny < 6

3) Avoid the most noisy strips in each detector

Beta Rates in DSSD0:

Hardware strip threshold Ex,Ey>250keV |Ex-Ey|<450keV

Black: No condition, Red: nx,ny<11, Green: nx,ny<6, Pink: nx,ny<6 & no noisy strips

DTAS

DTAS MC Response Benchmarking

DTAS alone

Geant4 geometry

- Point sources placed at the center
- Differences likely due to the missing summing-pileup contribution (in progress)

Rates and comparison: Spill-Off, Spill-On

Beam (spill) \rightarrow ~1000 pps DTAS spill-off \rightarrow ~8000 cps DTAS spill-on \rightarrow ~42000 cps

- Huge rate on spill, too high rate off spill
- Particles (neutrons, ...) and EM radiation coming with the beam disturbing the spectra
- Possibly only spill-off data is useful

Next Steps:

- Finish the data (FRS, AIDA, DTAS) selection study (sorting conditions)
- Study of implant-beta-gamma correlations with PID: development of data merging software
- Full data reduction: decay gamma spectra for TAGS analysis
- Finish benchmarking AIDA and DTAS response: full detector geometry

Thank you very much for your attention

S505 analysis plan

Calibrations, dependencies corrections, gain matchings, time aligments, definition of events, etc.

Because benchmaking with direct $T_{1/2}$ (or P_n) measurements seems not enough

Large discrepancies between measured data and theories, and between theories themselves. Change in trend across N=126

DESP

S505 FRS Settings

		207Hg 2.9m 4.6MeV (9/2+)
04Au 9.8s 0MeV (2-)	205,205mAu 32.5/6s 3.5/4.4MeV (3/2+,11/2-)	206Au 45s 6.7MeV (?)
203mPt 2s/12s 5MeV ./2-,?)	204Pt 16s 2.7MeV 0+	

²⁰⁴Pt in central trajectory ²¹⁰ Pb ²⁰⁹ Pb 211 999.16 MeV/u 4e+8 pps 204 pt 78+.. 78+ Fragment 208 TI 209 TI T 🕘 Target 210 -9 Be 1625 mg/cm ST Stripper Nb 220 mg/cm M air to AIDA O21 N78 Ar 550 mm ²⁰⁶ Hg ²⁰⁴ Hg ²⁰⁵ Hg ²⁰⁷ Hg 208 Hg ²⁰³ Hg M AIDA window HaC10 04 100 µm 209 M Air AIDA Snout O21 N78 Ar 615 mm M | bPlas1 H₁₀C₉ 3 mm M AIDAAir ²⁰⁵ Au 207 Au O21 N78 Ar 15 mm ²⁰⁴ Au ²⁰³ Au ²⁰² Au 208 / ²⁰⁶ Au S I Aida slits slits 5.62e+0 5.17e+1 7.62e-1 1.19e-4 -35 H +35 -40 V +40 M AIDA 1 0.16% 9.761% 4.832% 0.163% Si 1000 µn 206 Pt 201 Pt M AIDAAir 2 202 Pt 203 PI ²⁰⁴ Pt 207 c O21 N78 Ar 10 mm ²⁰⁰ Pt M AIDA 2 Si 1000 µm 2.61e-1 3.11e+1 1.72e+1 1.9e+0 3.94e-2 1.6e-5 A FaradayCup 16 15.507% 0.022% 6.43% 14.051% 15.596% 15.754% M ADAAir 4 200 204 Ir ²⁰⁵ Ir ۲ ۲ 2.11e-5 4.45e-2 1.43e-1 2.38e-2 8.11e-4 2.59e-8 2.8e-5% 0.18% 5.395% 13.223% 9.582% 0.683% 202 OS 199 **OS** 200 OS 201 OS 203 OS $\frac{HI}{DE}S$ ROJECTILI FRAGMEN ¹⁹⁹ Re ¹⁹⁸ Re

Ncalc=19

Sum=1.088e+2

DG=-0.25mm/%

NP=32

R=0x1

Show Disabled blocks V Z-q=0,0,0,0

S505 FRS Settings

FRS Calibrations - ToF

FRS Calibrations – SCI calibrations using TPC

HI DE SPE

- No TPC in S2 during the experiment, except the first 4h
- Need to use SCI in S2 but no file of defocused beam to calibrate them
- Use TPCs to calibrate SCIs using the first 4h of experiment

SCI reconstructed position vs raw position

FRS Calibrations – Time to Amplitud Converter (TAC)

FRS Calibrations – MUSICs spatial correction MUSIC energy loss vs TPC position

FRS Calibrations – MUSIC 2 temporal evolution correction

Before

DTAS

We need to verify the accuracy of Geant4 simulations using laboratory sources: \succ Gain matching of data and energy and width calibrations

> Quantification of background contributions: ambient background and summingpileup

Implementation of setup geometry in Geant4

Complex geometry \rightarrow scaled complexity measurements:

- DTAS alone
- DTAS + LOAX-HPGe
- DTAS + AIDA(+bPlast)
- DTAS + AIDA(+bPlast) + LOAX

Sources (with a range of activities):

- 241Am
- 57Co
- 133Ba
- 137Cs
- 22Na
- 60Co
- 152Eu
- 24Na, thanks to the collaboration of Uni.. Mainz (D. Renisch)

Comparison of DTAS and DTAS+LOAX measurements

Measurements span two days

> All (off-line) re-calibrated to a single 2 min reference measurement

AIDA Simulations

 Ingredient of TAS response *R* to decay: needed in the analysis

Because of energy threshold: strong energy dependence on Q_{β} -E_x

- > Use Geant4 to obtain $\varepsilon_{\beta}(Q_{\beta}-E_x)$
 - and study systematics
- Validate with measurements
 - Simplified geometry: 3 AIDA (BB18) DSSD, 10 mm apart
 - 128x0.56 mm strips X/Y
 - 1 mm thick
 - Implant in middle DSSD

AIDA

In progress:

• First MC study of AIDA beta-efficiency

AIDA Simulations

Knowledge of AIDA beta-efficiency (only shape!) as function of endpoint energy is necessary for TAGS analysis

 > Use Geant4 to obtain ε_β(Q_β-E_x) and study systematics
 > Validate with measurements

- Simplified geometry: 3 AIDA (BB18) DSSD, 10 mm apart
- 128x0.56 mm strips X/Y
- 1 mm thick
- Implant in middle DSSD

Realistic simulation:

- Implant-β spatial correlation as in AIDASort (O. Hall): <u>overlap</u> of implant and β cluster areas
- Beta event:
 - Condition on strip energy: E_{strip}>E_{th}
 - Condition on X-Y cluster energy difference: |E_{cx}-E_{cy}|<E_{cut}

Effect of strip energy threshold

- : pixel implantation

---- : pixel implantation+neighbor pixel

AIDA Simulations of beta-detection efficiency as a function of depth of implantation

Effect of Z (depth) implant position:

Can be obtained from LISE++ (!?)

AIDA Simulations of beta-detection efficiency as a function of endpoint energy

Final goal: determine the effective β -efficiency curve **shape** and assign an uncertainty band combining simulations and data

DTAS DACQ Scheme

Front & back

FAIR

DTAS DACQ

DACQ:

- · 1x SIS 3100/SIS1100 (VME-PCIe)
- · 3x SIS3316 Digitizer
- · VETAR-2
- · EXPLODER-2 (standalone)
- Optic fiber to Messhütte
- · PC CentOS 7

WR implementation

H. Johansson and S.Löeher, priv communication http://fy.chalmers.se/~f96hajo/rataser/

DTAS DACQ GASIFIC

[J. Agramunt et al.,

NIMA (2016)]

DTAS DACQ GASIFIC

-C-

daq@daqgamma4:/I/S505/S4

dag@daggamma4:/I/S505/S4

dag@daggamma4:/l/S505/S4

[J. Agramunt et al.,

NIMA (2016)]

Embedded Canvas Status Info

MainWindow

aq@daqgamma4:/l/S505/S4

DTAS electronics

Electronics:

<u>HV supply:</u>

- CAEN SY2527
- 2 x A1535P

Preamplifiers:

- 2x Mesytec MSI-8p (Gain: x1)
- 2x Mesytec MSI-8p (Gain: x5)
- 1x Mesytec MSI-8p (Gain: x1)
- 2x Mesytec Low Voltage MNV-4

LP Clock:

1X GSI-MSEP clock

Additional:

- TTL-NIM conv.
- Shaping Amp
- ...

0000000

TAGS Technique

Goal of TAGS technique:

Determine β -intensity distributions free of the Pandemonium • effect (HPGe spectroscopy)

New generation of segmented spectrometers:

- Information on decay scheme •
- Improved analysis

FAIR

0.1

0

1000

2000

4000

3000

Guadilla+, NIMA910(2018)79

Tain+, NIMA803(2015)36

) 6000 Energy [keV]

5000

Commissioned @ IFIC: Dec. 2013 Commissioned @ IGISOL: Feb. 2014 Commissioned @ BigRIPS@RIBF: June 2019 Comissioned @ DESPEC@GSI: June 2022

The TAGS analysis in a nutshell

1) Reduce the analysis to a **linear inverse problem** taking the b.r. as parameters:

$$d_i = \sum_j R_{ij}(\mathbf{b}) \cdot f_j$$

3) Construct the spectrometer response using MC simulations carefully bench-marked to calibrations

$$\mathbf{r}_{\mathbf{j}} = \sum_{k=0}^{j-1} b_{jk} \gamma_{\mathbf{jk}} \otimes \mathbf{r}_{\mathbf{k}}$$
$$\mathbf{R}_{\mathbf{j}} = \beta_{j} \otimes \mathbf{r}_{\mathbf{j}}$$

NIM: A430(1999)p333, A571(2007)p728, A571(2007)p719

2) Make a reasonable choice of b.r. matrix: we use the **nuclear statistical model** plus **known level-scheme**

4) Apply any suitable
(deconvolution) algorithm: we use the EM method

5) Study the effect of different b.r assumptions, MC simulations and other **systematic errors**