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Structure models
• Deformed 2-body models (neutron+core)


‣ Nilsson model


‣ PAMD [PRC89 (2014) 014333]


• Eigenstates from diagonalization in THO basis
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• (p,d) and (d,p) reactions are studied applying the Adiabatic Distorted 
Wave Approximation (ADWA).
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11Be(p,d)10Be 16C(d,p)17C

• (p,d) and (d,p) reactions are studied applying the Adiabatic Distorted 
Wave Approximation (ADWA).


• These calculations require the  and  overlaps.
⟨10Be |11 Be⟩ ⟨17C |16 C⟩
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• (p,d) and (d,p) reactions are studied applying the Adiabatic Distorted 
Wave Approximation (ADWA).


• These calculations require the  and  overlaps.


• Calculations are compared with recent experimental data.

⟨10Be |11 Be⟩ ⟨17C |16 C⟩

11Be(p,d)10Be 16C(d,p)17C

‣ GANIL, 35.3 MeV/nucleon beam     
[NPA683 (2001) 48]


‣ RCNP, 26.9 MeV/nucleon beam       
[Chinese P. L. 35 (2018) 082501]

‣ GANIL, 17.2 MeV/nucleon beam      
[PLB811 (2020) 135939]
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Application to 17C and 11Be

17C
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Application to 11Be(p,d)10Be
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Application to 16C(d,p)17C10
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Comparison with data suggest that: 

•  overlaps are realistic in our models. 

•  too small, suggesting a larger spectroscopic factor.

⟨17C(1/2+
1 ) |16 C(0+)⟩

⟨17C(5/2+
1 ) |16 C(0+)⟩



10
-1

10
0

10
1

d
σ

/d
Ω

 (
m

b
/s

r)
16

C(d,p)
17

C(1/2
+
)

17.2 MeV/nucleon

(a)

16
C(d,p)

17
C(1/2

1

Nilsson
PAMD
GANIL data

0 10 20 30 40
θ

CM
 (deg)

10
0

10
1

d
σ

/d
Ω

 (
m

b
/s

r)

(b)

16
C(d,p)

17
C(5/2

1

16
C(d,p)

17
C(5/2

+
)10

-1

10
0

10
1

d
σ

/d
Ω

 (
m

b
/s

r)

16
C(d,p)

17
C(1/2

+
)

17.2 MeV/nucleon

(a)

16
C(d,p)

17
C(1/2

1

Nilsson
PAMD
GANIL data

0 10 20 30 40
θ

CM
 (deg)

10
0

10
1

d
σ

/d
Ω

 (
m

b
/s

r)

(b)

16
C(d,p)

17
C(5/2

1

16
C(d,p)

17
C(5/2

+
)

10
-1

10
0

10
1

d
σ

/d
Ω

 (
m

b
/s

r)

16
C(d,p)

17
C(1/2

+
)

17.2 MeV/nucleon

(a)

16
C(d,p)

17
C(1/2

1

Nilsson
PAMD
GANIL data

0 10 20 30 40
θ

CM
 (deg)

10
0

10
1

d
σ

/d
Ω

 (
m

b
/s

r)

(b)

16
C(d,p)

17
C(5/2

1

16
C(d,p)

17
C(5/2

+
)

13

Application to 16C(d,p)17C

Comparison with data suggest that: 

•  overlaps are realistic in our models. 

•  too small, suggesting a larger spectroscopic factor.

⟨17C(1/2+
1 ) |16 C(0+)⟩

⟨17C(5/2+
1 ) |16 C(0+)⟩

Pauli blocking

Preliminary



14

N=16 Shell-Gap 
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Pseudo-states discretization method

• Scattering amplitudes for a discrete number of pseudo-states


• Convolution with the exact n+core scattering states
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Transfer to the continuum: 16C(d,p)17C
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Transfer to the continuum: 16C(d,p)17C
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Transfer to the continuum: 16C(d,p)17C 

Prelim
inary

N0 N1 N2 PAMD

-3

-2

-1

0

1

2

3

4

E
 (

M
eV

)
1/2

+

5/2
+ 5/2

+

3/2
+

1/2
+

3/2
+

1/2
+

5/2
+

3/2
+

16
C(0

+
)+n

3/2
+

3/2
+

1/2
+

5/2
+

1/2
+

5/2
+

4.
3 

M
eV

4.
0 

M
eV5.

1 
M

eV

4.
5 

M
eV



19

Transfer to the Continuum: 10Be(d,p)11Be
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Conclusions
• We have checked the suitability the PAMD and Nilsson models to describe 11Be 

and 17C systems. 


‣ 11Be: better with PAMD model (weak-coupling limit)


‣ 17C: better with Nilsson model (strong-couplig limit)


• These models have been applied to transfer reactions to bound states and to the 
continuum using pseudo-states.


• A good reproduction of the structure and transfer reactions have been found.


• The reaction 16C(d,p)17C to the continuum have been studied in order to confirm 
the existence of the N=16 shell-gap.


• Extensions to breakup reactions and other weakly bound nuclei are in progress. 

20
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Nilsson Diagram for 17C
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some particular nuclei, both bound and resonant one-neutron
levels are calculated as a function of quadrupole deformation.
The change of nuclear shell structure for neutrons is seen in
both negative and positive one-particle energies of the Nilsson
diagrams. The change comes from the unique behavior of
neutron orbits with small ! values, in particular ! = 0 and 1.
The modified shell structure has direct relevance to the ground
and low-lying states of neutron-drip-line nuclei, in which
weakly bound neutrons are present. Considering the possible
absence of many-body pair-field in light nuclei, the study of
the present type of Nilsson diagrams can definitely help us to
understand the origin of possible deformation and the related
spectroscopic properties of light neutron-drip-line nuclei.

In Sec. II some points of our model are summarized.
Numerical results are presented in Sec. III. Conclusions and
discussions are given in Sec. IV.

II. MODEL

The occupancy of weakly bound one-particle levels has
a contribution especially to the tail of the self-consistent
potentials. However, even for light nuclei presently considered
the number of weakly bound neutron(s) is much smaller than
that of well-bound core nucleons. In other words, the major part
of the nuclear potential is provided by well-bound nucleons.
Thus, for simplicity, the parameters of Woods-Saxon potentials
are taken from the standard ones [11] for stable nuclei except
for the depth, VWS. Namely, the diffuseness, the strength
of spin-orbit potentials, and the radius parameter are taken
from those on p. 239 of Ref. [11]. The depth is adjusted so
that a particular one-neutron level obtains a given desirable
binding-energy in respective examples.

The way in which bound one-particle levels are calculated
is described in Ref. [6], while the eigenphase formalism that
is used to estimate one-particle resonant levels for a deformed
potential is given in Refs. [7,8]. The essential point is that
the coupled equations obtained from the Schrödinger equation
are solved in coordinate space with the correct asymptotic
behavior of wave functions for r → ∞. The solution obtained
in this way is totally independent of the upper limit of radial
integration, Rmax, if both the potential and the coupling term
are already negligible at r = Rmax. One-particle resonant
energy for β #= 0 is defined as the energy at which one of
the eigenphases increases through π/2 as energy increases. In
the limit of β → 0 this definition in the eigenphase formalism
is in agreement with the definition of one-particle resonance
in spherical potentials described in textbooks [12]; the phase
shift increases through π /2 as energy increases.

One-particle resonance is not obtained if none of the
calculated eigenphases do not increase through π/2 as energy
increases. For example, we have no corresponding resonance
in the case where a calculated eigenphase starts to decrease
before reaching π/2 as energy increases. Even if one fails to
obtain one-particle resonance defined in terms of eigenphase,
for a certain small region of energy just after the disappearance
of resonance the concentration of the wave functions inside
the potential may still be found. However, the concentration
will easily disappear after a short time if a resonance is no
longer obtained in the eigenphase formalism. This situation is

analogous to the case of the spherical potential, in which the
phase shift starts to decrease before reaching π/2 as energy
increases [12].

Compared with the Nilsson diagram based on modified
oscillator potentials, the striking difference of the level scheme
obtained in the present work comes from the behavior of levels
with low ! values (in particular, ! = 0 and 1) for β = 0 and
those with small $ values (mainly $π = 1/2+, 1/2−, and
3/2−) for β #= 0, in both the weakly bound and positive-
energy regions. Note that the minimum ! value of possible
components of $π = 1/2+, 1/2−, and 3/2− levels is equal to
0, 1 and 1, respectively. The absence of the centrifugal barrier
for the ! = 0 channel produces the unique behavior of weakly
bound and positive-energy $π = 1/2+ orbits. However, we
find that some $π = 1/2+ resonant levels survive in a higher-
energy region (see, for example, the [200 1/2] level in Fig. 1)
if the relative probability of the s1/2 component inside the
potential is smaller than a certain critical value [8]. Because
the height of the centrifugal barrier becomes lower for a larger
nuclear radius, the unique behavior of ! = 1 components will
be more easily seen in nuclei with larger mass.

III. NUMERICAL RESULTS

A. Neutron-rich C isotopes

Taking VWS = −40.0 MeV and the radius parameter for
A = 17, at β = 0 in Fig. 1 we obtain ε(1d5/2) = −560 keV
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FIG. 1. Neutron one-particle levels as a function of quadrupole
deformation. Parameters of the Woods-Saxon potential are designed
approximately for the nucleus 17C. One-particle levels are denoted
by the asymptotic quantum numbers [N nz&$]. The $ values are
denoted for four positive-parity levels for β < 0, because it may be
difficult to see the connection to the levels for β > 0. One-particle
levels appearing at β = 0 are 1p1/2, 1d5/2, 2s1/2, and 1d3/2 levels at
−6.77, −0.56, −0.42, and +5.60 MeV, respectively. One-particle
levels in the positive-energy region, of which the phase shift (one of
the eigenphases) for β = 0 (β #= 0) does not increase through π/2
as energy increases, are not plotted. The neutron numbers 8 and 16,
which are obtained by filling in all lower-lying levels, are indicated
with circles.
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Occupation of single-particular levels 
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Pauli Blocking 
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11Be(p,d)10Be
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16C(d,p)17C
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Transfer to bound states
Sum for the three bound states
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Transfer to the continuum
• The prior form of the ADWA approximation is used


X  Too much spatial extension


✓ Little spatial extension


• The continuum is discretized with the pseudo-states method


‣ Scattering amplitudes for a discrete number of pseudo-states


‣ Convolution with the exact n+core scattering states

⟨17C |16 C⟩ →

⟨17C |Vn−16C |16 C⟩ →

30

ℱ(k, θ) ≈ ∑
n

⟨Ψ(k, r) |ΨTHO
n (r)⟩ℱTHO

n (θ)
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16C(d,p)17C: Prior-Post
Bound states
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Transfer to the continuum: Decay mode
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