

Transfer reactions to the continuum involving exotic nuclei

P. Punta, J. A. Lay and A. M. Moro

Departamento de Física Atómica Molecular y Nuclear Universidad de Sevilla

- Exotic nuclei Different properties
 - Shell closure
 - Halo nature
- Transfer reactions with exotic nuclei Advances in radioactive beam facilities
- Few-body models
 Significant effect of deformation
- ¹¹Be and ¹⁷C
 deformed core + neutron structure

				120	130	140	150	160	170	180	190	200	210
			10N	11N	12N	13N	14N	15N	16N	17N	18N	19N	20N
		8C	9C	10C	11C	12C	13C	14C	15C	16C	17C	18C	19C
	6B	7B	8B	9B	10B	11B	12B	13B	14B	15B	16B	17B	18B
	5Be	6Be	7Be	8Be	9Be	10Be	11Be	12Be	13Be	14Be	15Be	16Be	
ЗLi	4Li	5Li	6Li	7Li	8Li	9Li	10Li	11Li	12Li	13Li			
	3He	4He	5He	6He	7He	8He	9He	10He					
1H	2H	ЗH	4H	5H	6H	7H							
Neutron													

- Exotic nuclei
 Different properties
 - Shell closure
 - Halo nature
- Transfer reactions with exotic nuclei Advances in radioactive beam facilities
- Few-body models
 Significant effect of deformation
- ¹¹Be and ¹⁷C deformed core + neutron structure

- Exotic nuclei Different properties
 - Shell closure
 - Halo nature
- Transfer reactions with exotic nuclei Advances in radioactive beam facilities
- Few-body models
 Significant effect of deformation
- ¹¹Be and ¹⁷C deformed core + neutron structure

- Exotic nuclei Different properties
 - Shell closure
 - Halo nature
- Transfer reactions with exotic nuclei Advances in radioactive beam facilities
- Few-body models
 Significant effect of deformation
- ¹¹Be and ¹⁷C
 deformed core + neutron structure

				120	130	140	150	160	170	180	190	200	210
			10N	11N	12N	13N	14N	15N	16N	17N	18N	19N	20N
		8C	90	10C	11C	12C	13C	14C	15C	16C	17C	18C	19C
	6B	7B	8B	9B	10B	11B	12B	13B	14B	15B	16B	17B	18B
	5Be	6Be	7Be	8Be	9Be	10Be	11Be	12Be	13Be	14Be	15Be	16Be	
ЗLi	4Li	5Li	6Li	7Li	8Li	9Li	10Li	11Li	12Li	13Li			
	3He	4He	5He	6He	7He	8He	9He	10He					
1H	2H	ЗH	4H	5H	6H	7H							
Neutron													

Structure models

- Deformed 2-body models (neutron+core)
 - Nilsson model

$$H = -\frac{\hbar^2}{2\mu}\nabla^2 + V_{ls}(r)(\vec{l}\cdot\vec{s}) + V_c(r) - r\beta\frac{dV_c(r)}{dr}Y_{20}(\theta') + \frac{\hbar^2}{2\mathcal{J}}\vec{l}^2$$

► PAMD [PRC89 (2014) 014333]

$$H = -\frac{\hbar^2}{2\mu}\nabla^2 + V_{ls}(r)(\vec{l}\cdot\vec{s}) + V_{vc}^{AMD}(\vec{r},\xi) + h_{core}(\xi)$$

Eigenstates from diagonalization in THO basis

$$\phi_{nl}^{THO}(r) = \sqrt{\frac{ds}{dr}} \phi_{nl}^{HO}[s(r)]$$

Neutron transfer reactions

 (p,d) and (d,p) reactions are studied applying the Adiabatic Distorted Wave Approximation (ADWA).

Neutron transfer reactions

- (*p*,*d*) and (*d*,*p*) reactions are studied applying the Adiabatic Distorted Wave Approximation (ADWA).
- These calculations require the $\langle {}^{10}Be | {}^{11}Be \rangle$ and $\langle {}^{17}C | {}^{16}C \rangle$ overlaps.

¹¹Be(*p*,*d*)¹⁰Be

Neutron transfer reactions

- (p,d) and (d,p) reactions are studied applying the Adiabatic Distorted Wave Approximation (ADWA).
- These calculations require the $\langle {}^{10}Be | {}^{11}Be \rangle$ and $\langle {}^{17}C | {}^{16}C \rangle$ overlaps.
- Calculations are compared with recent experimental data.
 - ¹¹Be(*p*,*d*)¹⁰Be

$$^{16}C(d,p)^{17}C$$

- GANIL, 35.3 MeV/nucleon beam
 [NPA683 (2001) 48]
- RCNP, 26.9 MeV/nucleon beam
 [Chinese P. L. 35 (2018) 082501]

GANIL, 17.2 MeV/nucleon beam
 [PLB811 (2020) 135939]

Application to ¹⁷C and ¹¹Be

¹¹Be

P. Punta, et al. PRC108 (2023) 024613

Application to ¹¹Be(p,d)¹⁰Be

Application to ¹⁶C(d,p)¹⁷C

Comparison with data suggest that:

- $\langle {}^{17}C(1/2^+_1) | {}^{16}C(0^+) \rangle$ overlaps are realistic in our models.
- $\langle {}^{17}C(5/2^+_1) | {}^{16}C(0^+) \rangle$ too small, suggesting a larger spectroscopic factor.

Application to ¹⁶C(d,p)¹⁷C

Comparison with data suggest that:

- $\langle {}^{17}C(1/2^+_1) | {}^{16}C(0^+) \rangle$ overlaps are realistic in our models.
- $\langle {}^{17}C(5/2^+_1) | {}^{16}C(0^+) \rangle$ too small, suggesting a larger spectroscopic factor.

N=16 Shell-Gap

Pseudo-states discretization method

$$16C(d,p)17C$$

$$16C(d,p)17C$$

$$16C \rightarrow 0$$

$$16C \rightarrow$$

$$\mathcal{F}_n^{THO}(\theta) = \sqrt{\frac{\mu_i \mu_f k_f}{(2\pi\hbar^2)^2 k_i}} \langle \chi_f^{(-)} \varphi_p \Psi_n^{THO} | U | \chi_i^{(+)} \psi_d \phi_{^{16}C} \rangle$$

Convolution with the exact n+core scattering states

$$\mathcal{F}(k,\theta) \approx \sum_{n} \langle \Psi_{1^{7}C}(k,r) | \Psi_{n}^{THO}(r) \rangle \mathcal{F}_{n}^{THO}(\theta)$$

Transfer to the continuum: ¹⁶C(d,p)¹⁷C

Transfer to the continuum: ¹⁶C(d,p)¹⁷C

Transfer to the continuum: ¹⁶C(d,p)¹⁷C

Transfer to the Continuum: ¹⁰Be(d,p)¹¹Be

Conclusions

- We have checked the suitability the PAMD and Nilsson models to describe ¹¹Be and ¹⁷C systems.
 - ¹¹Be: better with PAMD model (weak-coupling limit)
 - ¹⁷C: better with Nilsson model (strong-couplig limit)
- These models have been applied to transfer reactions to bound states and to the continuum using pseudo-states.
- A good reproduction of the structure and transfer reactions have been found.
- The reaction ¹⁶C(d,p)¹⁷C to the continuum have been studied in order to confirm the existence of the N=16 shell-gap.
- Extensions to breakup reactions and other weakly bound nuclei are in progress.

Thanks for your attention

Backup

Nilsson Diagram for ¹⁷C

$$H_{sp} = -\frac{\hbar^2}{2\mu}\nabla^2 + V_c(r) + V_{ls}(r)(\vec{l}\cdot\vec{s}) - r\beta\frac{dV_c(r)}{dr}Y_{20}(\theta')$$

I. Hamamoto, PRC76 (2007) 054319

Occupation of single-particular levels

Pauli Blocking

Wave Functions

¹⁷C ground state 3/2+

Transfer to bound states

Sum for the three bound states

Transfer to the continuum

• The prior form of the ADWA approximation is used

X $\langle {}^{17}C | {}^{16}C \rangle$ → Too much spatial extension $\checkmark \langle {}^{17}C | V_{n-16C} | {}^{16}C \rangle$ → Little spatial extension

- The continuum is discretized with the pseudo-states method
 - Scattering amplitudes for a discrete number of pseudo-states
 - Convolution with the *exact n*+core scattering states

$$\mathcal{F}(k,\theta) \approx \sum_{n} \langle \Psi(k,r) | \Psi_{n}^{THO}(r) \rangle \mathcal{F}_{n}^{THO}(\theta)$$

¹⁶C(d,p)¹⁷C: Prior-Post

Bound states

Transfer to the continuum

Transfer to the continuum: Decay mode

