

F.J. Ferrer, A. Fernández, Joao Cruz, J.P. Fernández-García, D. Hufschmidt, B. Fernández-Martínez

INDEX

Targets

- Helium targets problems
- Sample preparation
- Morphological characterization
- Elemental characterization
- Cross section measurements
 - Results: ³He(¹H,¹H)³He Elastic scattering (Backscattering, θ>90°)
 - Perspectives: Next future
- Conclusions

Using nuclear reactions for investigating properties of nuclei far from the stability line ("exotic" nuclei).

FERRER CAPN 2023FERRER **UAStable exotic** nucleus

> exotic nucleus = projectil H or He = target

INVERSE KINEMATIC

Protons		Alphas		
(¹ H, ¹ H)	Elastic so	(⁴ He, ⁴ He)		
(¹ H, ³ H)	Tw neutron	(⁴ He, ⁶ He)		
(¹H, ⁵H)	Four neutron transfer		(⁴He, ⁸ He)	

He problems

Gas jet target

polyethylene (CH₂)n Protons GAS, no solid molecules Alphas (Helium) Gas cell Image from K.E. Rehm, et al., Nucl. Instr. and Meth. Phys. Res. A, 647, (2011) 3-9.

Image from Oak Ridge National Laboratory web page

Implanted target foils

Image from Shellback Semiconductors Technology webpage

Filling the chamber

SOLID TARGETS

Homogeneously distributed pores structure

10x10x0,5 mm³ target

Sample preparation Magnetron Sputtering

Adjustable parameters:

- RF/DC Power
- Substrate bias
- Gas type and Pressure
- Target material

Magnetron sputtering:

- Wide extended technique in industry
- Very versatile allowing to deposit on large areas
- Deposition on different kinds of substrates like glass or even sensible and flexible like polymers
- Controlling deposition parameters is possible to control the microstructure and composition

Dynamic flux conditions High gas consumption 几

very EXPENSIVE for ³He (100s \$/l)

nmalu U

Α quasistatic procedure has been developed at the Materials Science Institute in Seville (ICMS-CSIC) [WO/2020/099695] to carry out the magnetron sputtering deposition procedure under the conditions of a very consumption of the low working gas.

Figure from A. Fernández et al. Mater. Des., 186 (2020), p. 108337

> L International Meeting on Fundamental Physics and XV CPAN Days 2-6 October 2023

DRASTIC REDUCTION (>99.5%) OF THE GAS CONSUMPTION

Morphological Characterization SEM and TEM

Homogeneously distributed pores structure

10x10x0,5 mm³ target

L International Meeting on Fundamental Physics and XV CPAN Days 2 - 6 October 2023

7/15 TEM cross-sectional view

Elemental Characterization

Proton Elastic Backscattering Spectroscopy

Energy (keV) SIMNRA software and Langley cross section

High amount of He!!! ³He/Si = 0,20

Sample	thickness (10 ¹⁵ at/cm²)	Au (%at)	Si (%at)	³ He (%at)	Au (μg/cm²)	Si (µg/cm²)	³ He (μg/cm²)
1st layer	30,0 ± 1,5	100			8,92 ± 0,45		
2nd layer	5300 ± 250		82,6 ± 1,1	17,3 ± 0,8		204,5 ± 10,2	4,48 ± 0,25

³He(¹H,¹H) ³He Elastic scattering

Backscattering ($\theta > 90^\circ$)

³He(¹H,¹H) ³He Elastic scattering Backscattering (θ > 90°)

PRELIMINARY RESULTS

Perspectives: Next future

Tailoring of the targets depending on the used proton energy.

Testing self-supported targets (as ⁴He targets); forward scattering

nmalu U Lisboa

Perspectives: Next future

Lower Energy (E < 500 keV) Rutherford contribution Cross Section

Higher Energy (E > 6000 keV) Possible decrease of the Cross Section

Perspectives: Next future

CONCLUSIONS

- The H+³He reaction at energies between 1,5 and 5,5 MeV at different angles using a ³He solid target was measured for the first time at CNA.
- The measured differential cross sections are in good agreement with the only results of found in literature (Langley).
- The specially prepared Si-³He thin solid film has demonstrated its capability as a suitable target for experimental studies on nuclear reactions involving ³He targets.

Some bibliography

- "Novel solid 4He targets for experimental studies on nuclear reactions: 6Li+4He differential cross-section measurement at incident energy of 5.5 MeV", F.J. Ferrer, B. Fernández, J.P. Fernández-García, F.G. Barba, A. Fernández, D. Galaviz, V. Godinho, J. Gómez-Camacho, A.M. Sánchez-Benítez, Eur. Phys. J. Plus 135 (2020) 465 (1-8).
- "Characterization and validation of a-Si magnetron sputtered thin films as solid He target with high stability for nuclear reactions", V Godinho, F. Ferrer, B. Fernández, J. Caballero-Hernandez, J. Gómez-Camacho, A. Fernández, ACS Omega, 1 (2016) 1229–1238.
- "Low gas consumption fabrication of 3He solid targets for nuclear reactions", A. Fernández, D. Hufschmidt, J.L. Colaux, J.J. Valiente-Dobón, V. Godinho, M.C. Jiménez de Haro, D. Feria, A. Gadea, S. Lucas, Mater. Des., 186 (2020) 108337
- "Method for obtaining a solid material with gaseous aggregates by means of magnetron cathode sputtering in static or quasistatic conditions to reduce the use of gas", A. Fernández, D. Hufschmidt, V. Godinho, M.C. Jiménez de Haro, ,2020, Patent WO2020099695A1
- Solid target of noble gases for nuclear reactions", V. Godinho, J. Caballero, A. Fernández, F.J. Ferrer, J.Gómez-Camacho, B. Fernández-Martínez, 2017, Patent W02017207848A1
 Linternational Meeting

Thank you for your attention

