

New half-lives and beta-delayed neutron branchings for neutron-rich Ba to Nd nuclei (A~160) relevant for the formation of the r-process rare-earth peak

M. Pallàs¹, A. Tarifeño-Saldivia^{2,1}, A. Tolosa-Delgado^{3,2}, G. G. Kiss⁴, J. L. Tain², A. Vitéz-Sveiczer⁴ for the BRIKEN collaboration⁵

¹Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain ²Instituto de Física Corpuscular (IFIC), Paterna, Spain ³European Organization for Nuclear Research (CERN), Geneva, Switzerland ⁴Institute for Nuclear Research (ATOMKI), Debrecen, Hungary ⁵www.wiki.edu.ac.uk/display/BRIKEN/Home

Index

- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

Motivation

3

r-process (rapid neutron capture)

- 1. Neutron rich region
- 2. Timescale us-ms
- 3. Responsible for around half of the nuclei heavier than iron.

Physical magnitudes of interest for rprocess simulations:

- Half-life ($T_{1/2}$)
- Beta-delayed neutron emission probabilities (P_{xn})
- Masses
- Neutron capture rates

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

β-delayed neutron emission

Neutron rich nuclei typically decay via β^{-} . The energy available for this process is the \mathbf{Q}_{β} value. For very rich neutron nuclei the \mathbf{Q}_{β} is big enough $(\mathbf{Q}_{\beta} > \mathbf{S}_{n})$ to allow neutron emission following a β^{-} decay.

This process is known as $\boldsymbol{\beta}\text{-}delayed$ neutron emission.

Sabrina Strauss. Stewardship Science Annual Review (2016)

000

4

β -delayed neutron emission on REP

According to theoretical models and sensitivity studies, $T_{1/2}$ and P_n of very neutron-rich nuclei for $55 \le Z \le 64$ are the most influential ones on the formation of the REP.

BRIKEN project

GSI

UNIVERSITAT POLITÈCNICA DE CATALUNYA

- Riken Nishima Center (Japan).
- The largest beta-delayed detector in the world.
- More than 50 participants from 18 international institutions
- Aims to study very rich neutron isotopes characterized by their:

 QAK RIDGE Vational Laboratory
 - Half-life (T_{1/2})
 - Emission probabilities $(P_{xn})_{N}$

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

Index

- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

Experimental setup

This experimental setup is composed of:

1. BigRIPS+ZeroDegree fragment separators

Experimental setup

This experimental setup is composed of:

- 1. BigRIPS+ZeroDegree fragment separators
- 2. Advanced Implantation Detector Array (AIDA)
 - Stack of 6 silicon double-sided detectors.

Griffin et al, PoS(NIC XIII)097 2015

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

9

Experimental setup

This experimental setup is composed of:

- 1. BigRIPS+ZeroDegree fragment separators
- 2. Advanced Implantation Detector Array (AIDA)
 - Stack of 6 silicon double-sided detectors.
- 3. BRIKEN detector
 - 140 ³He tubes + HDPE moderator for neutron detection.
 - 2 Clover type HPGe gamma detectors.
 - Ancillary (F11, Si...).

*M. Pallas et. al. ArXiv:2204.13379 (2022) Full report to be submited (2023).

A. Tarifeño-Saldivia et. al. J. Instrum. (2017). 10

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

Index

- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

Experimental data

- The data used in this analysis came from an experiment conducted by the BRIKEN Collaboration in October 2018 at RIBF RIKEN.
- In the 2018 experimental run, a **60-particle-nA 238U beam**, with **345 MeV/nucleon**, hitting a **4 mm thick Be target** was used to produce the secondary radioactive beam. The neutron-rich fragments were filtered out by the BigRIPS fragment separator.
- **108 hours** of measures were analyzed. In this study, we rerport the results isotopes from Ba to Nd.

Data Analysis

2. Data is merged into a single file where temporal correlation vectors are built.

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

Data Analysis

- 1. Acquisition is run by three different DAQs (BigRIPS, AIDA and BRIKEN). To ensure syncronization, a signal is fed to each DAQ.
- 2. Data is merged into a single file where temporal correlation vectors are built.
- 3. Sort the merged data to obtain β -implant ($T_{i\beta}$) and β implant-neutron ($T_{i\beta n}$) time correlation histograms for
 each isotope.

Data Analysis

- 2. Data is merged into a single file where temporal correlation vectors are built.
- 3. Sort the merged data to obtain β -implant ($T_{i\beta}$) and β implant-neutron ($T_{i\beta n}$) time correlation histograms for
 each isotope.
- 4. $T_{1/2}$ and P_{1n} values are obtained from the simultaneous fit of these histograms.

Fitting procedure

After obtaining the time-correlated histograms, we perform a self-consistent fitting procedure* to obtain $T_{1/2}$ and P_{1n} values using Bateman equations.

*A. Tolosa-Delgado et al. NIM A 925 (2019) 133-147

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

Index

- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

Particle identification

CPAN XV, 2-4 October 2023 - Max Pallàs Solís

$T_{1/2}$ results

- Consistent results with previous measurements. 34 T_{1/2} values have been remeasured many with improved precision.
- Additionally, we report 1 new T_{1/2}.
- New higher limits will be presented in the final report.

P_{1n} results

- **20 new P_{1n} values** reported.
- 2 P_{1n} values have been remeasured with improved precision.
- New higher limits will be presented in the final report.

$P_{1n} \ results$

- **20 new P_{1n} values** reported.
- 2 P_{1n} values have been remeasured with improved precision.
- New higher limits will be presented in the final report.

CPAN XV, 2-4 October 2023 - Max Pallàs Solís

Remarks

Next steps:

- 1. Finish the systematic errors evaluation.
- 2. Astrophysical impact of the new data on the description of the r-process.

Acknowledgments

M. Pallàs^{1*}, A. Tarifeño-Saldivia^{2,1†}, G. G. Kiss³, J. L. Tain², A. Tolosa-Delgado^{5,2}, A. Vitéz-Sveiczer^{3,4}, F. Calviño¹, J. Agramunt², P. Aguilera⁶, A. Algora², J. M. Allmond⁷, H. Baba⁸, N. T. Brewer^{9,7}, R. Caballero-Folch¹⁰, P. J. Coleman-Smith¹¹, G. Cortes¹, T. Davinson¹², I. Dillmann^{10,13}, C. Domingo-Pardo², A. Estrade¹⁴, N. Fukuda⁸, S. Go^{15,16}, C. J. Griffin¹⁰, R. K. Grzywacz^{9,7}, O. Hall¹², L. J. Harkness-Brennan¹⁷, T. Isobe⁸, D. Kahl¹², T. T. King⁹, A. Korgul¹⁸, S. Kovács⁴, S. Kubono⁸, M. Labiche¹¹, J. Liu¹⁹, M. Madurga⁹, K. Miernik¹⁸, F. Molina⁶, N. Mont-Geli¹, A. I. Morales², E. Nácher², A. Navaro¹, N. Nepal⁸, S. Nishimura⁸, M. Piersa-Silkowska¹⁸, V. Phong⁸, B. C. Rasco^{9,7}, J. Romero-Barrientos⁶, B. Rubio², K. P. Rykaczewski⁷, Y. Saito^{10,20}, H. Sakurai⁸, Y. Shimizu⁸, M. Singh⁹, T. Sumikama⁸, H. Suzuki⁸, T. N. Szegedi³, H. Takeda⁸, K. Wang¹⁴, M. Wolińska-Cichocka²¹, P. J. Woods¹², and R. Yokoyama¹⁶ for the BRIKEN collaboration²²

¹Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain.

- ²Instituto de Física Corpuscular (IFIC), CSIC-UV, E-46980 Paterna, Spain.
- ³Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Bem tér 18/c, Hungary.
- ⁴University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary.
- ⁵Department of Physics, University of Jyväskylä, Finland.
- ⁶Centro de Investigación en Física Nuclear y Espectroscopía de Neutrones (CEFNEN). Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago-Chile.
- ⁷Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
- ⁸RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- ⁹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA.
 ¹⁰TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
- ¹¹STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom.
- ¹²School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
- ¹³Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada.
 ¹⁴Central Michigan University, Mt. Pleasant, MI 48859, USA.
- ¹⁵Department of Physics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
- ¹⁶Center for Nuclear Study, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan.
- ¹⁷Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom.
- ¹⁸Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
- ¹⁹Department of Physics, the University of Hong Kong, Pokfulam Road, Hong Kong.
- ²⁰Department of Physics and Astronomy, The University of British Columbia, Vancouver BC V6T 1Z1, Canada.

²¹Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warsaw, Poland.

Improve signal to noise ratio

The are multiple techniques to reduce the background of our measures and improve the signal to noise ratio:

• Beta veto window using ancillary detectors.

000

27

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

Improve signal to noise ratio

The are multiple techniques to reduce the background of our measures and improve the signal to noise ratio:

- Beta veto window using ancillary detectors.
- Neutron veto window using ancillary detectors (only affects $T_{i\beta n}$).

000

29

Improve signal to noise ratio

The are multiple techniques to reduce the background of our measures and improve the 14000 signal to noise ratio:

- Beta veto window using ancillary detectors.
- Neutron veto window using ancillary • detectors (only affects T_{iBn}).
- Beta energy threshold

Fix charged states

30

CPAN XV, 2-4 October 2023 - Max Pallàs Solís

Theoretical models

RHB+pn-RQRPA: Relativistic Hartree Bogoliubov + proton-neutron Relativistic Quasiparticle Random Phase Approximation

QRPA+HF: Quasiparticle Random-Phase Approximation + Hauser-Feshbach

pnFAM: proton-neutron Finite Amplitude Method

pn-RQRPA + HF: proton-neutron Relativistic Quasiparticle Random-Phase Approximation + Hauser-Feshbach statistical model

Isomer effect

CPAN XV, 2-4 October 2023 – Max Pallàs Solís

32

BRIKEN detector

This detector is composed of:

- 1. 140 ³He tubes for neutron detection.
- 2. 2 Clover type HPGe gamma detectors.
- 3. Ancillary (F11, Si...).
- 4. HDPE moderator and shielding.

Design: A. Tarifeño-Saldivia et. al. Journal of Instrumentation, 12(04):P04006–P04006, apr 2017.

BRIKEN detector

34

This detector is composed of:

- 1. 140 ³He tubes for neutron detection.
- 2. 2 Clover type HPGe gamma detectors.
- 3. Ancillary (F11, Si...).
- 4. HDPE moderator and shielding.

This array offers neutron efficiencies of around 68.6% up to 1MeV. The expected neutron energy spectra from beta-delayed emission is expected to be below 1MeV.

*Characterization of the BRIKEN neutron counter: M. Pallas et. al. ArXiv:2204.13379 (2022) Full report to be summited (2023).

CPAN XV, 2-4 October 2023 – Max Pallas Solis	

	$Q_{\beta-n}$								
	155Nd	156Nd	157Nd	158Nd	159Nd	160Nd	161Nd	162Nd	163Nd
	-2.08E+3	-1.33E+3	-3.98E+2	3.90E+2	1.31E+3	1.75E+3	2.59E+3	3.00E+3	3.88E+3
	154Pr	155Pr	156Pr	157Pr	158Pr	159Pr	160Pr	161Pr	
U	1.39E+3	2.09E+3	2.76E+3	3.69E+3	4.27E+3	4.99E+3	5.45E+3	6.16E+3	
	153Ce	154Ce	155Ce	156Ce	157Ce	158Ce	159Ce		
	7.77E+2	1.27E+3	2.00E+3	2.52E+3	3.44E+3	3.82E+3	4.73E+3		
	152La	153La	154La	155La	156La	157La			
	3.86E+3	4.84E+3	5.30E+3	6.21E+3	6.65E+3	7.67E+3			
	151Ba	152Ba	153Ba	154Ba					
	3.30E+3	3.62E+3	4.74E+3	5.06E+3					