Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED Characterization, Upgrades and Outlook

Bernardo Gameiro (IFIC), Jorge Lerendegui Marco (IFIC), James Hallam (IFIC), Javier Balibrea Correa (IFIC), Ion Ladarescu (IFIC), César Domingo Pardo (IFIC), Víctor Babiano Suárez (UV)

> Red Temática de Física Nuclear XV CPAN days, Octuber 2-6 2023, Santander

2023/10/03

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

- **2** Detectors and updates
- **3** Imaging Resolution
- **4** Background Suppression
- **5** Conclusion

<u>B.Gameiro</u>, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

- 2 Detectors and updates
- **3** Imaging Resolution
- 4 Background Suppression
- **5** Conclusion

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Imaging Resolution

Motivation

- Neutron capture cross-section measurements:
 - Astrophysical interest:
 - s-process of nucleosynthesis
 - Typical experiment:
 - Neutron time of flight
 - Major challenges:
 - Direct neutron background
 - Neutron-induced background

Figure 1: Scheme of the neutron-capture processes, including the s-process path, relevant for the motivation of the present work.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Motivation

- Neutron capture cross-section measurements:
 - Astrophysical interest:
 - s-process of nucleosynthesis
 - Typical experiment:
 - Neutron time of flight
 - Major challenges:
 - Direct neutron background
 - Neutron-induced background

Figure 2: Scheme of a neutron time of flight experiment.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Imaging Resolution

Background Suppression

Motivation

- Neutron capture cross-section measurements:
 - Astrophysical interest:
 - s-process of nucleosynthesis
 - Typical experiment:
 - Neutron time of flight
 - Major challenges:
 - Direct neutron background
 - Neutron-induced background

Figure 3: Scheme of a neutron capture to an excited state and possible decays to ground state by emission of different γ -ray cascades.

Major challenges

• Direct neutron background:

- Neutrons scattered on the target
- Detector requirement: ↓ neutron sensitivity

• Neutron-induced γ background:

- Neutrons interact with environment
- Detector requirement: select γ events

Figure 4: Possible interactions.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

FNUC (XV CPAN)

Imaging Resolution

Background Suppression

Solution

• Imaging:

- Select events based on spatial origin
- i-TED
 - Total-energy detector
 - Imaging capabilities
 - Compton camera
- Main features:
 - Different requirements sometimes pull development in opposing ways

Figure 5: Working principle of a Compton camera.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

2 Detectors and updates

3 Imaging Resolution

4 Background Suppression

5 Conclusion

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Imaging Resolution

Background Suppression

Detectors: Multi i-TED Array

- i-TED modules ×4:
 - 2 planes per module
 - 1+4 crystals+SiPM per module
 - 8×8 pixels per SiPM
 - Total of 1280 channels!

• Innovative system:

- Currently C₆D₆ are used
- Adds spatial discrimination for γ -rays
- Adds complexity to the system

• Current status:

- Years of development
- First experimental results of ${}^{79}Se(n,\gamma)$
- Working, optimized, characterized

Figure 6: Multi i-TED detector system in its first experimental campaign.

Imaging Resolution

Background Suppressior

Detectors: i-TED-E Module

- New addition to the lab!
- For testing and applications:
 - Range verification in hadrontherapy
 - Nuclear waste verification
 - Dosimetry in boron-neutron capture therapy
 - Radio-guided surgery
- Enter i-TED-E:
 - Working, characterized
 - First experimental campaign (CMAM 2023/06)
 - Upcoming experimental campaign (ILL 2023/10)

Figure 7: i-TED-E with its full metal casing and without the 6 Li neutron shield

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Introduction 000000	Detectors and updates 000●	Imaging Resolution Ba 0000 00	ckground Suppression Con
Major [Detector Upgrades		
	Irregular pixelmaps	ASIC temperature	CRT study
	Noise from $ eq$ gains	Thermal gain drift	PET mode
	NUCL State State <ths< th=""><th>60 60 60 60 60 60 60 60 60 60</th><th>Skew: 25 FWHM: 3.44->2.36 ns Dogree: 1 00 00 00 00 00 00 00 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0</th></ths<>	60 60 60 60 60 60 60 60 60 60	Skew: 25 FWHM: 3.44->2.36 ns Dogree: 1 00 00 00 00 00 00 00 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0
	Per-pixel threshold	Temperature correction	Compton mode
13 12 11 11 11 11 11 11 8 8		Pursues of the second s	20.0 7.5 5.0 2.5 6 0.0 -2.3
H		00000	-5.0 4

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED FNUC (XV CPAN)

0.50 0.75

-7.5

-10.0

408

104

ADC channel

-0.75 -0.50

-0.25 0.00 0.25 (E_a-E_s)/(E_t) (MeV)

2 Detectors and updates

3 Imaging Resolution

4 Background Suppression

5 Conclusion

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

oduction	Detectors and updates	Imaging Resolution ○●○○	Background Suppressio

Imaging algorithms

• Algorithms:

- Back-projection
- Analytical
- Stochastic Origin Ensemble
- Back-projection:
 - Origin probability
 - Simple & fast
 - Smooth peak

• Analytical:

- Origin probability
- Better peak to background ratio
- Artifacts

Figure 8: Comparison of results of different imaging algorithms.

Detectors and updates

Imaging Resolution

Background Suppression

Conclusion

Position sensitivity

• Clear spatial difference

Method	Position	X-Centroid	σ_X	Y-Centroid	σ_Y
BP	(-50,0)	-36.0	36.2	0.7	37.6
Analytical	(-50,0)	-65.3	21.6	3.6	16.0
BP	(0,50)	-8.2	17.4	32.7	23.5
Analytical	(0,50)	-11.1	14.1	41.8	16.3
BP	(0,0)	-6.3	24.0	-0.9	22.8
Analytical	(0,0)	-8.9	18.8	0.4	24.0

Table 1: Deviation and resolution (in mm) of the back-projection and analytical algorithms for Compton imaging. Study of ²²Na source in different positions.

Figure 9: Position sensitivity with different algorithms.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez	FNUC (XV CPAN)
Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED	15 / 59

Imaging Resolution

Background Suppression

Conclusion

Effect of focal distance

Figure 10: Effect of focal distance

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

- 2 Detectors and updates
- **3** Imaging Resolution
- **4** Background Suppression

5 Conclusion

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED FNUC (XV CPAN)

Detectors and updates

Imaging Resolution

Background Suppression

Figures of Merit and Validation

- Objective: Spatial cuts
- Problem:

Imaging doesn't give coordinates

• Solution:

Need for other figures of merit

• Validation:

Experimentally verify applicability

Figure 11: Back-projection of the Compton cone onto source plane.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Imaging Resolution

Background Suppression

FoM proposed

• Figures of merit:

- Lambda
- Angular Resolution Measure
- Compton Angle

• Experimental setup:

- Validation at different energies
- Validation based on spatial or spatial-related information

Figure 12: Experimental setup to study the background suppression applicability of different FoM. ²²Na source placed in front, side and back of i-TED-A module.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

FNUC (XV CPAN)

Imaging Resolution

Background Suppression

FoM proposed

• Figures of merit:

- Lambda
- Angular Resolution Measure
- Compton Angle

• Experimental setup:

- Validation at different energies
- Validation based on spatial or spatial-related information

Figure 13: Experimental setup to study the background suppression applicability of different FoM. ²²Na source placed in front, side and back of i-TED-A module.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

FoM proposed

• Figures of merit:

- Lambda
- Angular Resolution Measure
- Compton Angle

• Experimental setup:

- Validation at different energies
- Validation based on spatial or spatial-related information

Figure 14: Experimental setup to study the background suppression applicability of different FoM. ²²Na source placed in front, side and back of i-TED-A module.

Imaging Resolution

Background Suppression

The ARM

• Angular difference between the Compton angle calculated assuming the source was in the center of the origin plane and the Compton angle calculated from the energies deposited

$$\begin{array}{l} \mathsf{ARM} = \theta_{\mathsf{Position}} - \theta_{\mathsf{Energy}} \\ = \arccos\left(\frac{\vec{S} \cdot \vec{A}}{||S||||A||}\right) - \arccos\left(1 + \frac{m_{\mathrm{e}^{-}}}{E_{T}} - \frac{m_{\mathrm{e}^{-}}}{E_{A}}\right) \end{array}$$

Figure 15: Definition of the Angular Resolution Measure.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Detectors and updates

Imaging Resolution

The ARM

Backprojection: 511keV, no cuts

Before cut

Backprojection: 511keV, ARM>0

(b) After cut

Figure 16: Effect of ARM

cut on imaging (3 pos).

(a)

Peaks of Na22 in different positions in relation to the detector Cut:arm > 0

Figure 17: Effect of ARM cut on energy spectra.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Imaging Resolution

Background Suppression

The ARM

• Method:

- 3 position of ²²Na
- Normalized to less restrictive cut
- Integral of peak over background spectrum taken

• Result:

- Improved signal-to-background
- Clear difference between the behavior of events spatially in front and in other positions

Figure 18: Restrictive cuts using the ARM FOM to suppress events based on spatial origin.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Introd	

Imaging Resolution

Background Suppression

The Compton Angle

 It's the angle between the incoming and the outgoing γ-ray, defined by:

$$\cos\theta = 1 - \left(\frac{m_e c^2 E_s}{E_a E_t}\right)$$

Figure 19: Definition of the Compton angle.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Imaging Resolution

Background Suppression

Conclusion

The Compton Angle

Backprojection: 511keV, no cuts

Figure 20: Effect of Compton Angle cut on imaging (3 pos).

Figure 21: Effect of Compton Angle cut on energy spectra.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

FNUC (XV CPAN)

Imaging Resolution

The Compton Angle

• Method:

- 3 position of ²²Na
- Normalized to less restrictive cut
- Integral of peak over background spectrum taken
- Result:
 - Improved signal-to-background
 - Clear difference between the behavior of events spatially in front and in other positions

Figure 22: Restrictive cuts using the Compton Angle to suppress events based on spatial origin.

Outlook

• Limitations:

- Experimental vs simulation
- Impossible to completely classify good events
- Having bad events as part of the data degrades the validation

• Proposed:

- Monte Carlo simulation
- Label the events properly
- Study for more positions
- Feature selection
- Space selection
- Study applicability of Machine Learning

- 2 Detectors and updates
- 3 Imaging Resolution
- 4 Background Suppression

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Imaging Resolution

Summary

• i-TED modules:

- Multi i-TED array for astrophysics
- i-TED-E for applications
- Upgrades:
 - Per-pixel threshold
 - Thermal gain drift correction
 - CRT for PET mode
- Imaging:
 - Comparison of algorithms
 - Position sensitivity
 - Impact of focal distance

• Suppression:

- Extended study of previous FoM
- Two FoM that yield better results
- Proposed future steps

Thank you!

- bgameiro@ific.uv.es
- hymnserc.ific.uv.es
- HYMNS-ERC Consolidator Grant
- ASFAE/2022/027

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

FNUC (XV CPAN)

Figure 23: Simplified data pipeline for i-TED.

 $\underline{\textbf{B.Gameiro}}, \text{ J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez a service de la construcción de la construcción$

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Detectors and updates

Imaging Resolution

Background Suppression

Problems & Upgrades: Minor

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Detectors and updates

Imaging Resolutior

Background Suppression

Problems & Upgrades: Major

Irregular pixelmaps

Noise from \neq gains

Per-pixel threshold

ASIC temperature Thermal gain drift

Temperature correction

CRT study

PET mode

Compton mode

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

FNUC (XV CPAN)

Detectors and upo

Imaging Resolution

Background Suppressior

Conclusion

Problems & Upgrades: Software: Irregular pixelmaps

- Compromise needed?
 - ↑ Threshold
 - \downarrow Noise
 - \downarrow Energy resolution
- Per-pixel threshold!
 - How?
 - Per crystal
 - 5× median
 - Results
 - Resolution
 - File size

(g) Noisy pixels

(h) Per-pixel threshold

Figure 24: Irregular pixelmaps.

Threshold	6	7	8	9	10	11	Custom
Size (MB/min)	2032	919	496	341	366	173	415
Table 2. Cine of the test file of a large 1 bet in 100 Peter (aris							

Table 2: Size of the text file .singles.ldat in 10^6 Bytes/min for different threshold parameters.

Problems & Upgrades: Software: ASIC temperature

- ASIC
 - Gain \propto Temperature
 - $\beta \approx -15 \text{ADC}/^{\circ}\text{C}$
 - Function: ٠

 $ADC_{Ref} = ADC_{Measure}$

Conclusion

Figure 25: Thermal gain drift.

Figure 26: Effect of thermal gain correction on spectrum.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez	FNUC (XV CPAN)
Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED	35 / 59

Problems & Upgrades: Software: CRT study (PET mode)

Figure 27: Illustration of PET and ToF PET.

 $(W, N_{\rm p})$

FWHM (ns)

Figure 28: Best CRT configurations in PET mode. (0.1)

(0.9)

2.40

(1.25)

2.36

Calculate timestamp:

$$t_{\text{event}} = \frac{\sum_{i}^{\min\{N_{\rho}, N_{t}\}} t_{\text{pixel}} \times E_{i}^{W}}{\sum_{i}^{\min\{N_{\rho}, N_{t}\}} E_{i}^{W}}$$

Table 3: FWHM time resolution in ns for coincidences between 2 crystals of i-TED-D using the two 511 keV γ -rays of ²²Na emitted at 180°

3.44

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

FNUC (XV CPAN)

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Introd	

Imaging Resolution

Background Suppression

Characterization

Crystal spectrum

Figure 31: ¹³⁷Cs spectrum.

i-TED	A	В	C	D	Mean
Comparison	6.58±0.83	$\substack{7.17 \pm 0.18 \\ 6.90 \pm 0.20}$	$7.42{\pm}1.14$	6.87±0.29	7.01±0.79
Best	6.28±0.70		$6.92{\pm}0.90$	6.75±0.48	6.71±0.67

Table 4: Mean resolution at 662 keV for each i-TED.

Add-back spectrum

Figure 32: ¹³⁷Cs spectrum.

Absorber	1	2	3	4	Mean	All
Best	$8.23 {\pm} 0.38$	$9.88{\pm}0.39$	$8.49{\pm}0.46$	$8.76{\pm}0.62$	$_{8.84\pm0.61}$	$9.62{\pm}0.29$

Table 5: Mean coincidence resolution at 662 keV for i-TED-A.

Focal

Figure 33: Counting rate in coincidence mode.

Distance = (75 - Position) mm

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Introd	

Imaging Resolution

Background Suppressior

Characterization

Crystal spectrum

Figure 34: ¹³⁷Cs spectrum.

i-TED	A	В	C	D	Mean
Comparison	6.58±0.83	7.17±0.18	$7.42{\pm}1.14$	6.87±0.29	7.01±0.79
Best	6.28±0.70	6.90±0.20	$6.92{\pm}0.90$	6.75±0.48	6.71±0.67

Table 6: Mean resolution at 662 keV for each i-TED.

Add-back spectrum

Figure 35: ¹³⁷Cs spectrum.

Absorber	1	2	3	4	Mean	All
Best	8.23±0.38	9.88±0.39	$8.49{\pm}0.46$	$8.76 {\pm} 0.62$	$\scriptstyle 8.84 \pm 0.61$	9.62±0.29

Table 7: Mean coincidence resolution at 662 keV for i-TED-A.

Focal

Figure 36: Counting rate in coincidence mode.

Distance = (75 - Position) mm

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

FNUC (XV CPAN)

Detectors and updates

Imaging Resolution

Background Suppression

Conclusion

Interactions of $\gamma\text{-rays}$ with matter

Figure 37: Interactions of electromagnetic radiation with matter.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Detectors and updates

Imaging Resolution

Background Suppression

Conclusion

Klein-Nishina

Figure 38: Scattering according to the formula of Klein-Nishina for several γ -ray energies that will be used in this work for the characterization of i-TED.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez FNUC (XV CPAN) Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED 41 / 59 tion Detectors and updates

Imaging Resolution

Background Suppressio

Intrinsic Activity of LaCl₃(Ce)

• Intrinsic activity:

• β:

• ¹³⁸La

- Natural occurring
- γ :

• ¹³⁸Ba

Decays from ¹³⁸La

• α:

• ²²⁷Ac

Contamination

Figure 39: 137 Cs spectrum taken with a LaCl₃(Ce) showing intrinsic activity.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Imaging Resolution

Background Suppression

Asymmetry after cut

Figure 40: Back-Projection images of ²²Na source with background after cuts.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

FNUC (XV CPAN)

Counting rate, not efficiency

- For a Compton camera, efficiency is a very complex topic
- In Compton mode, the efficiency of a given $\gamma\text{-ray}$ depends on:
 - Energy
 - Distance to detector
 - Angle of position
 - Distance between planes
 - Different energy depositions in each plane

Figure 41: Neutron energy spectra measured with the ⁵⁶Fe sample using different detectors.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez FNUC (XV CPAN) Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED 45 / 59

ntroduction 000000	Detectors and updates	Imaging Resolution	Background Suppression	Conclusion 00
TOF detector				

Characterization of neutron flux:

- Previous characterization:
 - TOF detector
 - Thin scintillator
 - Very fast response
- During the experiment:
 - Neutron monitors
 - Validate flux
 - γ flash measured with main detector setup

Figure 42: Neutron flux at both experimental areas of n TOF.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Introduction 000000	Detectors and updates 0000	Imaging Resolution 0000	Background Suppression	Conclusion
n_TOF				

Figure 43: Effect of ARM cut on energy spectra.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

FNUC (XV CPAN)

Parallel single2trees

- Interaction reconstruction
- Created .root files from binary files
- New version with modularity in mind:
 - Data pipeline:
 - Prefect
 - Big data and distribution:
 - Dask
 - Performance:
 - Numba
 - Rapids
 - CuPy

Scientific Data Management

- Intake: Python module
- Data saved in YAML file
- •
- Improvements:
 - Works regardless of file format
 - Adds metadata
 - Abstracts how to access files
 - Allows central data storage
 - Possibility of adding comments to measurement data

Introd	

Imaging Resolution

Background Suppression

Calibration

Figure 44: Calibration interface developed for i-TED.

<u>B.Gameiro</u>, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED FNUC (XV CPAN)

Introd	

Imaging Resolution

Calibration

Figure 45: InterSpec calibration interface developed by SNL.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

FNUC (XV CPAN)

Imaging Resolution

Peaks of Na22 in different positions in relation to the detector

Background Suppression

Conclusion

Analysis of suppression - ARM

Figure 46: Effect of ARM cut on energy spectra.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED FNUC (XV CPAN)

g x00

A=98.09

Peaks of Na22 in different positions in relation to the detector

Conclusion

Analysis of suppression - Compton Angle

Cut:ang < 60 1750 A=67.2 000 1500 200 1250 A=85.20 400 1000 300 500 0.8 10 12 14 600 1100 200 1250 400 2000 300 750 200 2-2.56

Figure 47: Effect of Compton Angle cut on energy spectra.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Imaging Resolution

Background Suppressior

Range verification in hadrontherapy

- PET imaging widely used in medical physics
- PET vs Compton modes:
 - Compton can use different energy γ -rays
 - Compton has larger FOV
 - Compton uses prompt $\gamma\text{-rays}$ that closely correlate to the Bragg peak
 - PET uses products of reactions that decay by β^+ and are subject to biological washup

Figure 48: Four i-TED modules during a study under clinical conditions at the Heidelberg Hadrontherapy Center.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

on Detectors and updates Imaging Reso

Background Suppression

Range verification in hadrontherapy

Figure 49: Monte Carlo simulation of proton beam depositing its energy in matter and corresponding Compton image of the emitted γ -rays.

<u>B.Gameiro</u>, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions <u>with i-TED</u>

Introduction 000000	Detectors and updates	Imaging Resolution	Background Suppression	Conclusion 00
GN-Vision				
	Neutron detector/ Absorber Scatterer (S)	(A) (A) (B) (A) (B) (B) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5	,

-40

-60

Figure 50: GN-Vision: a Compton camera and neutron pin-hole imager.

-80

-60 -40-20

(b)

20 40 60 80

Neutron imaging

FOV X(mm)

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

(a) GN-Vision

Neutron

pin-hole . collimator

FNUC (XV CPAN)

0.5 0.4 0.3

0.2

0.1

Introduction 000000	Detectors and updates	Imaging Resolution	Background Suppression	Conclusion 00			

Figure 51: Pulse decay for different particles detected.

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

Particle Discrimination

Figure 52: Visualization of the Figure of Merit in PSD

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez

Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED

FNUC (XV CPAN)

Introduction 000000	Detectors and updates	Imaging Resolution	Background Suppression	
0				

Figure 53: Scintillation: fluorescence or phosphorescence depending on the excited state

B.Gameiro, J.Lerendegui-Marco, J.Hallam, J.Balibrea-Correa, I.Ladarescu, C.Domingo-Pardo, V.Babiano-Suárez Optimization of imaging techniques for background suppression of stellar Nucleo-Synthesis reactions with i-TED FNUC (XV CPAN)

Conclusion