

Status of and perspectives for the study of (α,n) reactions at CNA HiSPANoS (by means of activation and time-of-flight)

Carlos GUERRERO on behalf of *The MANY Collaboration*

V. Alcayne, A. Algora, J. Balibrea, J. Benito, M.J.G. Borge, J. Briz, F. Calviño, D. Cano-Ott, A. De Blas, G. Cortés, C. Domingo-Pardo, B. Fernández, L.M. Fraile, G. García, R. García, J. Gómez-Camacho, E.M. González-Romero, <u>C. Guerrero</u>, J. Lerendegui-Marco, M. Llanos, V, T. Martínez, E. Mendoza, N. Mont-Geli, J. R. Murias, E. Nácher, S.E.A. Orrigo, M. Pallàs, A. Perea, A. Pérez de Rada, V. Pesudo, J. Plaza, J.M. Quesada, A. Sánchez, V. Sánchez-Tembleque, R. Santorelli, J.L. Taín, A. Tarifeño-Saldivia, O. Tengblad, A. Tolosa-Delgado, J.M. Udías, D. Villamarín and S. Viñals

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain Universidad Complutense (UCM), Madrid, Spain Instituto de Física Corpuscular (IFIC-CSIC), Valencia, Spain Centro de Micro-Análisis de Materiales (CMAM-UAM), Madrid, Spain. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain Universidad de Sevilla (US), Sevilla, Spain Centro Nacional de Aceleradores (CNA-US-CSIC) Sevilla, Spain Instituto de Estructura de la Materia (IEM-CSIC), Madrid, Spain University of Jyväskylä, Jyväskylä, Finland

(α ,n) reactions

Relevance and status of (α, n) reactions

See Nil Mont Geli's talk:

"Measurement of the ${}^{27}Al(\alpha,n){}^{30}P$ thick target yields and differential cross-sections at CMAM using the miniBELEN neutron counter"

The MANY Collaboration

• Two Spanish facilities

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

UNIVERSIDAD

MADRID

Two Spanish detectors

Instituto de Estructura de la Materia

aSIDAD

The HISPANOS neutron facility at CNA

The HiSPANoS neutron facility at CNA

Fast neutron beams at HiSPANoS

Test experiment on ${}^{27}Al(\alpha,n)$

Experimental set-up

Activation measurement

Activation results

The 1.9 factor difference can not be justified: we'll repeat the experiment soon

ToF measurement: MONSTER

C. Guerrero, CPAN Days, Santander, Spain (October 3rd 2023)

Ciemat

Centro de Investigacione

Energéticas, Medioambientale y Tecnológicas

GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA

EINNOVACIÓN

ToF measurement: the pulsed α beam

The buncher is designed <u>only</u> for "p" and "d".

Bunching α requires a modification by the manufaturer (NEC): ongoing.

What can we do as of now so far?

ToF measurement: data analysis (I)

ToF measurement: data analysis (II)

Strategy:

- ToF measured simultaneously with CNA's & CIEMAT'S DAQs.

- Analysis and spectrum deconvolution made independently by CNA and CIEMAT for internal cross check and comparison.

=> Results presented herein correspond to CNA's análisis.

ToF measurement: results @ 5,5 MeV

Very good agreement in both absolute value and neutron energy with the only experiment available in the literature.

ToF measurement: results @ 5,5 to 8,5 MeV

Summary, conclusions and Outlook MANY@HiSPANoS CNA

Summary, conclusions and outlook

- Neutron production through (α,n) reactions is of interest in many applications, and is the aim of The MANY Collaboration.
- At the CNA HiSPANoS facility both Thick Target Yield (TTY) and double differential energy and angle cross sections measurements are feasible through activation and time-of-flight.
- The current buncher produces α pulses with ~30% unbunched...
- First ²⁷Al(α ,n) measurement with LaBr₃ & a CIEMAT's **MONSTER** module
- Results from CNA's analysis:
 - **TTY:** Good E_{α} dependence but a factor of 1.9 overestimation (experTBD).
 - $\sigma(\mathbf{E}_{\alpha}, \boldsymbol{\theta})$: Good agreement with data at 5,5 MeV.
- (α,n) ToF measurements feasible => but new buncher by end of 2024.

