SensCalc

Public and unified calculations of sensitivities to feebly interacting particles

Based on [2305.13383] by Maksym Ovchynnikov, Jean-Loup Tastet, Oleksii Mikulenko, Kyrylo Bondarenko

Jean-Loup Tastet jean-loup.tastet@uam.es • CPAN • Santander • 2023-10-03

Plan

- The search for feebly interacting particles (FIPs)
-Why a new package?
- The semi-analytic estimate behind SensCalc
- How to run SensCalc
- Limitations \& conclusion

The search for
feebly interacting particles
(FIPs)

Limitations of the SM

Limitations of the SM

Observational limitations

Limitations of the SM

Observational limitations

- Massless neutrinos
\Longrightarrow no oscillations

Limitations of the SM

Observational limitations

- Massless neutrinos
\Longrightarrow no oscillations
- No dark matter

Limitations of the SM

Observational limitations

- Massless neutrinos
\Longrightarrow no oscillations
- No dark matter
- No matter $(\eta=0)$

Limitations of the SM

Limitations of the SM

Theoretical limitations

Limitations of the SM

Theoretical limitations

- Higgs naturalness

Limitations of the SM

Theoretical limitations

- Higgs naturalness
- Strong CP problem

Limitations of the SM

Theoretical limitations

- Higgs naturalness
- Strong CP problem
- Flavour puzzle

Limitations of the SM

Theoretical limitations

- Higgs naturalness
- Strong CP problem
- Flavour puzzle
- And more...

Limitations of the SM

- Higgs naturalness

Possible solution:

New particles are light and/or feebly coupled to the Higgs

How could a light particle have evaded searches?

- Must be a Standard Model singlet, i.e. a $\left(\mathbf{1}_{c}, \mathbf{1}_{L}, Y=0\right)$ representation
- Interacts through mass mixing, kinetic mixing, $d>4$ operators, ...
- In the absence of additional interactions, is typically long-lived (with the notable exception of "rich" dark sectors, where it can decay to lighter particles)
- The simplest examples are the so-called "portals":

Add a new degree of freedom, with the lowest-dimensional interactions, and suppressed by a small coupling.

The 5 portals

The 5 portals

$d=4$

- Scalar portal / dark Higgs $S: \mu_{\mathrm{HS}} S \phi^{\dagger} \phi, \lambda_{\mathrm{HS}} S^{2} \phi^{\dagger} \phi$
- Heavy neutral lepton / right-handed neutrino $\nu_{R}:-Y_{\alpha}^{\nu}\left(L_{\alpha}^{\dagger} \cdot \tilde{\phi}\right) \nu_{R}^{\dagger}$
- Vector portal / dark photon $A^{\prime}: \epsilon F_{\mu \nu}^{\prime} F^{\mu \nu}$ (kinetic mixing with the SM photon)
- Millicharged particle $\chi: \epsilon \bar{\chi} A \chi$ (coupled to very light dark photon)

The 5 portals
 $d=4$

- Scalar portal / dark Higgs $S: \mu_{\mathrm{HS}} S \phi^{\dagger} \phi, \lambda_{\mathrm{HS}} S^{2} \phi^{\dagger} \phi$
- Heavy neutral lepton / right-handed neutrino $\nu_{R}:-Y_{\alpha}^{\nu}\left(L_{\alpha}^{\dagger} \cdot \tilde{\phi}\right) \nu_{R}^{\dagger}$
- Vector portal / dark photon $A^{\prime}: \epsilon F_{\mu \nu}^{\prime} F^{\mu \nu}$ (kinetic mixing with the SM photon)
- Millicharged particle $\chi: \epsilon \bar{\chi} A \chi$ (coupled to very light dark photon)
$d=5$
- Axion-like particle $a: \frac{c_{a \gamma \gamma}}{f_{a}} a F \tilde{F}, \frac{c_{a g g}}{f_{a}} a G \tilde{G}, \frac{c_{\psi}}{f_{a}} \partial_{\mu} a \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$

The 5 portals

- Heavy neutral lepton / right-handed neutrino $\nu_{R}:-Y_{\alpha}^{\nu}\left(L_{\alpha}^{\dagger} \cdot \tilde{\phi}\right) \nu_{R}^{\dagger}$

Example: Heavy neutral leptons (HNLs)

Example: Heavy neutral leptons (HNLs)

- No $S U(2)_{L}$ singlet ν_{R} in the SM

Example: Heavy neutral leptons (HNLs)

- No $S U(2)_{L}$ singlet ν_{R} in the SM
- Simplest addition which can give a mass to neutrinos: $-\left(Y_{\alpha I}^{\nu} *\left(L_{\alpha} \cdot \tilde{\phi}^{\dagger}\right) \nu_{R, I} \longrightarrow\left(m_{D}\right)_{\alpha l} \nu_{L, \alpha} \nu_{R, I}\right.$ with the Dirac mass $m_{D}=\frac{\nu}{\sqrt{2}}\left(Y_{\alpha I}^{\nu}\right)^{*}$
(where $\alpha=e, \mu, \tau, I=1,2, \ldots, N_{\mathrm{HNI}}$)

Three Generations of Matter (Fermions) spin $1 / 2$

Example: Heavy neutral leptons (HNLs)

- No $S U(2)_{L}$ singlet ν_{R} in the SM
- Simplest addition which can give a mass to neutrinos:

$$
-\left(Y_{\alpha l}^{\nu}\right) *\left(L_{\alpha} \cdot \tilde{\phi}^{\dagger}\right) \nu_{R, I} \longrightarrow\left(m_{D}\right)_{\alpha l} \nu_{L, \alpha} \nu_{R, I}
$$

$$
\text { with the Dirac mass } m_{D}=\frac{v}{\sqrt{2}}\left(Y_{\alpha I}^{\nu}\right)^{*}
$$

$$
\text { (where } \alpha=e, \mu, \tau, I=1,2, \ldots, N_{\mathrm{HNL}} \text {) }
$$

- SM singlets can have a Majorana mass:

Three Generations
of Matter (Fermions) spin $1 / 2$

$$
-\frac{M_{I}}{2}\left(\nu_{R, I} \nu_{R, I}+\nu_{R, I}^{\dagger} \nu_{R, I}^{\dagger}\right)
$$

Example: Heavy neutral leptons (HNLs)

The see-saw mechanism

- Both mass terms are allowed: $-\frac{1}{2}\left(\begin{array}{ll}\nu_{L}^{T} & \nu_{R}^{T}\end{array}\right)\left(\begin{array}{cc}0 & m_{D}^{T} \\ m_{D} & M_{R}\end{array}\right)\binom{\nu_{L}}{\nu_{R}}+\mathrm{h} . \mathrm{c}$.
- Mass diagonalisation leads to mixing: $\nu_{L, \alpha} \cong U_{\alpha, i}^{\mathrm{PMNS}} \nu_{i}+\Theta_{\alpha, I} \nu_{R, I}$
- Neutrinos are light if HNLs are heavy, i.e. $M_{R} \gg m_{D}$ (or $\Theta \ll 1$) Their masses are given by the see-saw formula:

$$
m_{\alpha \beta}^{\text {light }} \approx-\sum_{I} \frac{\left(m_{D}\right)_{\alpha I}\left(m_{D}\right)_{\beta I}}{M_{I}} \approx-\sum_{I} M_{I} \Theta_{\alpha I} \Theta_{\beta I}
$$

Example: Heavy neutral leptons (HNLs)

Phenomenology

- HNLs have mass $M_{N} \approx M_{R} \longrightarrow$ heavy neutrinos
- Same interactions as light neutrinos, but suppressed by the mixing angle Θ
- Lifetime $\tau_{N} \propto \Theta^{-2} \longrightarrow$ potentially long-lived particle (LLP)

Prototypical example of a feebly interacting particle (FIP)

How to search for FIPs

How to search for FIPs

Feeble interactions lead to:

- Suppressed production rate

How to search for FIPs

Feeble interactions lead to:

- Suppressed production rate
- High intensity / luminosity
- Low background

How to search for FIPs

Feeble interactions lead to:

- Suppressed production rate
- A possibly long lifetime: the particle may travel a long distance before decaying

Solution

- High intensity / luminosity
- Low background

How to search for FIPs

Feeble interactions lead to:

- Suppressed production rate
- A possibly long lifetime: the particle may travel a long distance before decaying

Solution

- High intensity / luminosity
- Low background
- Displaced detector
- Large detector volume

Example: SHiP

(Search for HIdden Particles)

SM decay products

few $\times 10^{20}$
protons-on-target
/ 5 years
@ 400 GeV

Example: MATiñ in in

(Massive Timing Hodoscope for Ultra Stable neutraL pArticles)

Example: FZSER

(Forward search experiment at the LHC)

And more!

A plethora of proposed experiments

 ${ }^{1}$, V. Dandoy ${ }^{12}$, L. Darrme ${ }^{13}$, B. Dey ${ }^{14}$, ${ }^{18, a}$ F. Deppisch ${ }^{15}$ $\mathrm{d}^{18, a}$, V. V. Flambaum ${ }^{19}$, P. Foldenauer ${ }^{10}$, C. Gattid ${ }^{20}$

 franch $^{20, a, *}$, L. L. Li^{45}, A. Lindner ${ }^{34}$, J. Lopez-Pavon ${ }^{46, a}$ Milstead ${ }^{49}$, I. Oceano ${ }^{34}$, C. A. J. O'Hare ${ }^{4}$, A. Paoloni ${ }^{20}$ elov ${ }^{35,36,37}$, R. Pöttgen ${ }^{53}$, M. Raggi ${ }^{54}$, G. Ripellin er-Rembold ${ }^{56}$, J. Shelton ${ }^{57}$, N. Song ${ }^{58}$, C. Sun ${ }^{59}$, N. Tran ${ }^{62}$, N. Trevisani ${ }^{63}$, S. Ulmer ${ }^{64,65}$, S. Urrea ${ }^{46}$, Y. Y. Wong ${ }^{19}$, C. Zorbilmez ${ }^{69}$, K. Zurek ${ }^{18}$

SensCalc

(D) Maksym Ovchynnikov

Please always switch to the up-to-date version!
A public and unified evaluator of sensitivities of lifetime frontier experiments to feebly interacting particles. Based on Mathematica. For details, see the accompanying arXiv preprint https://arxiv.org/abs/2305.13383 and the manual included among the files.

Currently, it is a beta version, so there may be bugs. You are very welcome to write about them!

The list of changes compared to the previous version (1.0.4):

- Added the possibility to select the FIP decay channels visible in the given experiment.
- Re-organized the notebook 1. Acceptances.nb. Its structure should now be more transparent.
- Fixed several minor mistakes in the code.

Why a new software package?

The problem

The problem

* the specific experiments
don't matter to the discussion

SensCalc

One Mathematica package to rule them all

- Unified description of the FIP phenomenologies
- Explicit control over all the inputs (SM particle spectra, experiment geometry, selection cuts, ...)
- Public, hackable code based on a semi-analytical method

SensCalc

One Mathematica package to rule them all

Implemented facilities \& experiments

- SPS: NA62/HIKE (dump), SHiP, SHADOWS, CHARM, BEBC
- Fermilab: DUNE, DUNE-prism, DarkQuest
- LHC: FASER/FASER2/FASERv/FASERv2/ FASER2-FPF, SND@LHC/advSND, FACET, MATHUSLA, CODEX-b, ANUBIS (shaft or ceiling)
- FCC-hh: equivalents of the LHC experiments + DELIGHT, FOREHUNT

Implemented models

- Dark photons
- Dark scalars (mixing \& quartic coupling)
- HNLs (with arbitrary mixing pattern)
- ALPs (coupled to gluons, photons, fermions)
- Anomaly-free $\mathrm{U}(1)$ mediators

Semi-analytic estimate

Experimental setup \& naive estimate

$N_{\text {ev }} \sim N_{\text {prod }} \cdot \epsilon_{\text {FIP }} \cdot\left\langle P_{\text {decay }}\right\rangle \cdot \epsilon_{\text {decay }}$

- $N_{\text {prod }}=$ number of produced FIPs
- $\epsilon_{\text {FIP }}=$ geometric acceptance of the FIP
- $\left\langle P_{\text {decay }}\right\rangle=$ mean probability of the FIP decaying within the fiducial volume
- $\epsilon_{\text {decay }}=$ acceptance of the FIP decay products

Semi-analytic estimate

Precise estimate

$N_{\mathrm{ev}}=\sum_{i} N_{\text {prod }}^{(i)} \int d E d \theta d z f^{(i)}(\theta, E) \cdot \epsilon_{\mathrm{az}}(\theta, z) \cdot \frac{d P_{\mathrm{dec}}}{d z} \cdot \epsilon_{\mathrm{dec}}(m, \theta, E, z) \cdot \epsilon_{\mathrm{rec}}$

- $N_{\text {prod }}^{(i)} f^{(i)}(\theta, E)=$ total number of produced FIPs \& their distribution in $\theta-E$ (for a given production mechanism (i))
- $\epsilon_{\mathrm{az}}=$ azimuthal acceptance for the FIP to decay within the decay volume
- $\frac{d P_{\mathrm{dec}}}{d z}=\frac{1}{\cos (\theta) c \tau \sqrt{\gamma^{2}-1}} \exp \left[-\frac{z}{\left(\cos (\theta) c \tau \sqrt{\gamma^{2}-1}\right)}\right]=$ differential decay probability for the FIP
- $\epsilon_{\text {dec }}=$ acceptance of the FIP decay products
- $\epsilon_{\text {rec }}=$ reconstruction efficiency (optional: must be computed externally)

Semi-analytic estimate

Integrate using Monte-Carlo

$$
N_{\mathrm{ev}}=\sum_{i} N_{\mathrm{prod}}^{(i)} \int d E d \theta d z f^{(i)}(\theta, E) \cdot \epsilon_{\mathrm{az}}(\theta, z) \cdot \frac{d P_{\mathrm{dec}}}{d z} \cdot \epsilon_{\mathrm{dec}}(m, \theta, E, z) \cdot \epsilon_{\mathrm{rec}}
$$

The integral can be broken down into conditional distributions and computed using Monte-Carlo integration

Semi-analytical \longleftrightarrow Monte-Carlo equivalence

Semi-analytic estimate

Integrate using Monte-Carlo

$$
N_{\mathrm{ev}}=\sum_{i} N_{\mathrm{prod}}^{(i)} \int d E d \theta d z f^{(i)}(\theta, E) \cdot \epsilon_{\mathrm{az}}(\theta, z) \cdot \frac{d P_{\mathrm{dec}}}{d z} \cdot \epsilon_{\mathrm{dec}}(m, \theta, E, z) \cdot \epsilon_{\mathrm{rec}}
$$

The integral can be broken down into conditional distributions and computed using Monte-Carlo integration

Semi-analytical estimate

Validation against SensMC (Monte-Carlo)

Good agreement at the $\sim 10-20 \%$ level despite different code base and inputs

Validation against other packages ALPINIST - BC9 (ALPs coupled to photons) - SHiP

Validation against other packages

FairShip - BC1 (dark photons) \& BC6 (HNLs) - SHiP @ ECN4

Simplified treatment of the upper bound in FairShip

Good agreement despite slightly different phenomenology

Validation against other packages

And more...

- FORESEE
- The LHCb simulation framework

Running SensCalc

Search Upload Communities

May 22, 2023
Software
Open Access

SensCalc

- A set of Mathematica notebooks for computing the signal or sensitivity
- Input: experimental setup (geometry, cuts) and distribution of parent particles
- Output: tabulated number of events as a function of the mass and coupling (may be converted into exclusion or discovery sensitivities)

Running SensCalc

Modular structure

- Acceptances.nb: specify the geometry \& acceptance criteria $\rightarrow \epsilon_{\mathrm{az}}, \epsilon_{\mathrm{dec}}$
- FIP distribution.nb: specify the facility \& FIP \rightarrow FIP distribution
- FIP sensitivity.nb: compute the tabulated number of events \& sensitivity
- Plots.nb: produce the sensitivity plots

Running SensCalc
 Models \& experiment selection

- Numerous models \& experiments are already implemented and can be easily selected through dialog windows
- New models or geometries can be implemented similarly to the existing ones

Acceptances.nb

The user specifies:

- the experimental setup (geometry, magnetic field, presence of an EM calorimeter)
- the selection cuts (E, p_{T}, impact parameter, \ldots)

Acceptances.nb

The notebook produces the grid: $m, \theta, E, z, \phi_{\text {inside decay vol., }} \epsilon_{\mathrm{az}}(\theta, z)$

FIP trajectories that point:

- (green) towards the end of the detector
- (cyan) elsewhere

Acceptances.nb

The notebook outputs $\epsilon_{\mathrm{dec}}(m, \theta, E, z)$ by averaging
$\epsilon_{\text {dec }}\left(m, \theta, E, z, \phi_{\text {inside decay volume }}\right.$, decay channel $)$
over all decay channels and azimuthal angles ϕ.

This is done by:

- evaluating the decay phase space using either analytic matrix elements or a phase space pre-generated by MadGraph5_aMC@NLO and Pythia8 (for decays involving jets)
- checking whether the decay products point towards the end of the detector and satisfy the kinematic cuts

Case study: ALP with fermion couplings

cf. Maksym's talks at Light Dark World and the Brookhaven Forum (tomorrow, online)

- The widely adopted phenomenology [1901.09966] misses hadronic ALP decays and various production channels
- All sensitivities of future experiments \& existing bounds have to be recomputed! [F. Kahlhoefer, G.D.V. Garcia, M. Ovchynnikov, A. Zaporozhchenko, in preparation]

Case study: ALP with fermion couplings

cf. Maksym's talks at Light Dark World and the Brookhaven Forum (tomorrow, online)

Compared to the PBC description:

- Large ALP masses have become less accessible
- Fermilab experiments feature no significant production from B_{s} Instead, the dominant production mechanism is the mixing with light mesons

Limitations

- The user is responsible for passing the number of signal events corresponding to the desired significance level
$\rightarrow 2.3$ for 90% CL, 3 for 95% CL assuming zero background
- SensCalc cannot estimate the expected number of background events
- SensCalc only computes the total number of accepted events It does not produce detailed event records with the final states \rightarrow cannot use binned likelihoods, CL_{s}, etc...

When to use SensCalc?

- Validate your signal model
- Estimate the sensitivity in a zerobackground setting or in a counting experiment (single background bin)
- Consistently compare the sensitivities of multiple experiments
- Compute an optimistic upper bound on your sensitivity
- Produce detailed event records (e.g. to pass to the full simulation)
- Estimate the sensitivity in the background-dominated regime when the shapes of the signal/bkg. matter (e.g. peak searches)

Conclusion

- Summary plots can give a false illusion of consistency and order
- But computing sensitivities is a complicated, messy process:
- Different phenomenologies and conventions for couplings
- More-or-less precise signal acceptances and background estimations
- SensCalc helps bring some consistency back
- Validate your signal model
- Compare experiments under the same assumptions
- Regularly updated (new experiments, new ALP phenomenology, etc...) FASER2@FPFjust added!

