Studying the Sterile Baryonic Neutrino Using Direct Detection and Spallation Source Experiments

David Alonso-González, Dorian Amaral, Adriana Bariego-Quintana, David Cerdeño & <u>Martín de los Rios</u>*,

*martindelosrios13@gmail.com

Introduction

• Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct Detection Experiments

Coherent elastic Neutrino-Nucleus scattering

Predicted by the SM: [Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W)Z$$

... And detected by the COHERENT collaboration!! [Akimov et al. 1708.01294 (2017)]

CEvNS @ Spallation Source Experiments

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = n_T \sum_{\nu_{\alpha}} \int_{E_{\nu}^{\mathrm{min}}} \frac{\mathrm{d}\phi_{\nu_e}}{\mathrm{d}E_{\nu}} P(\nu_e \to \nu_{\alpha}) \frac{\mathrm{d}\sigma_{\nu_{\alpha\,T}}}{\mathrm{d}E_R} dE_{\nu} \xrightarrow{\text{Xenon, } (Z, \text{SuperCDM, etc.})}$$

Spallation Source Experiments

DM Direct Detection Experiments

$$v_{e} v_{\mu} v_{\mu}$$

$$v_{e} \overline{v_{e}} v_{\mu} \overline{v_{\mu}} v_{\tau} \overline{v_{\tau}}$$

Spallation Source Experiments

DM Direct Detection Experiments

$$v_{e} v_{\mu} \overline{v_{\mu}}$$

Neutrinos up to ~50 MeV

 $v_{e} v_{e} v_{\mu} v_{\mu} v_{\tau} v_{\tau}$

Neutrinos up to ~20 MeV

Spallation Source Experiments

DM Direct Detection Experiments

$$v_{e} v_{\mu} v_{\mu}$$

Neutrinos up to ~50 MeV

Not very small energy thresholds

 $v_{e} v_{e} v_{\mu} v_{\mu} v_{\tau} v_{\tau}$

Neutrinos up to ~20 MeV

Very small recoil energy thresholds

Spallation Source Experiments

DM Direct Detection Experiments

$$v_{e} v_{\mu} v_{\mu}$$

Neutrinos up to ~50 MeV

 $v_{e} v_{e} v_{\mu} v_{\mu} v_{\tau} v_{\tau}$

Neutrinos up to ~20 MeV

Not very small energy thresholds So, why not to combine them??

Sterile Baryonic Neutrino Model

• Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct Detection Experiments
- Sterile Baryonic Neutrino Model

Sterile Baryonic Neutrino (SBN)

Pospelov 1103.3261 (2011)]

$$\mathcal{L} \supset rac{m_{Z'}^2}{2} Z'^{\mu} Z'_{\mu} + g_b Z'^{\mu} \overline{\nu}_b \gamma_{\mu} \nu_b + rac{1}{3} g_q Z'^{\mu} \sum_q \overline{q} \gamma_{\mu} q \,.$$

PARAMETER SPACE

 $g_{Z'}$, $m_{Z'}$ m_N , $|V_{eN}|$, $|V_{\mu N}|$, $|V_{\tau N}|$

Predicted by the SM: [Freedman (1974)]

$$\frac{d\sigma_{\nu N}}{dE_R} = \frac{G_F^2}{4\pi} Q_v^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2}\right) F^2(E_R)$$
$$Q_v = N - (1 - 4\sin^2\theta_W)Z$$

 $\frac{d\sigma_{\alpha 4}}{dE_R} = \frac{g_{Z'}^4 A^2 \left|U_{\alpha 4}\right|^2 M_N}{2\pi E_{\nu}^2 \left(2M_N E_R + m_{Z'}^2\right)^2} \left[4E_{\nu}^2 - 2E_R \left(M_N - E_R + 2E_{\nu}\right) - \frac{m_4^2}{M_N} \left(M_N - E_R - E_{\nu}\right)\right] F^2(E_R)$

Results

• Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct Detection Experiments
- Sterile Baryonic Neutrino Model

• Results

benchmark	m_4 [GeV]	$\left U_{e4}\right ^2$	$\left U_{\mu 4} \right ^2$	$ U_{\tau 4} ^2$
points BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

	$m_4 \; [\text{GeV}]$	$ U_{e4} ^2$	$\left U_{\mu4} ight ^2$	$ U_{ au 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

	$m_4 \; [{ m GeV}]$	$ U_{e4} ^2$	$\left U_{\mu4}\right ^2$	$\left U_{\tau 4}\right ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

	m_4 [GeV]	$ U_{e4} ^2$	$ U_{\mu4} ^2$	$ U_{\tau 4} ^2$
BP1a	2×10^{-3}	0	9×10^{-3}	0
BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP1c	2×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP1d	2×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP1e	2×10^{-3}	9×10^{-3}	0	0
BP2a	9×10^{-3}	0	9×10^{-3}	0
BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}
BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}
BP2d	9×10^{-3}	0	9×10^{-3}	9×10^{-3}
BP3a	20×10^{-3}	0	9×10^{-3}	0
BP4a	40×10^{-3}	0	9×10^{-3}	0
BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0
BP5a	60×10^{-3}	0	9×10^{-3}	0

Conclusions

• Introduction

- Coherent elastic neutrino-nucleus scattering
- Spallation-Source experiments
- Dark Matter Direct Detection
 Experiments
- Sterile Baryonic Neutrino Model
- Results
- Conclusions

- Sterile neutrino models can be probed with Spallation Source (SS) and Direct Detection (DD) experiments.
- DD will be able to access to very low recoil energies, all the neutrino flavours but not big masses.
- SS will be able to access to heavier sterile neutrinos but not to all neutrino flavours.
- Combining DD and SS may help...
 - improving the significance,
 - constraining the parameter space
 - allowing parameter reconstruction (especially in the couplings),
 - and allowing model discrimination (Sterile Baryonic Neutrino).

Back up

Let's study sor	ne					
benchmark		$m_4 [{ m GeV}]$	$ U_{e4} ^2$	$\left U_{\mu4}\right ^2$	$ U_{ au 4} ^2$	
points	BP1a	2×10^{-3}	0	9×10^{-3}	0	
	BP1b	2×10^{-3}	0	9×10^{-3}	9×10^{-4}	
Experiment	$M_{\rm det}$ (ton)	$E_{ m th}(m keV_{ m nr})$	$N_{ m POT}$ (×10 ²³)	r	L(m)	$\sigma_{ m sys}$
ESS	1	20	2.8	0.3	20	5%
	BP2b	9×10^{-3}	0	9×10^{-3}	9×10^{-4}	
	BP2c	9×10^{-3}	0	9×10^{-3}	4×10^{-3}	
Experin	ment	$M_{\rm det}$ (ton)		$E_{ m th}(m keV_{ m nr})$	c	⁷ 8 _B
DARW	VIN	200		1	1((4)%
	BP4f	40×10^{-3}	9×10^{-3}	9×10^{-3}	0	
	BP5a	60×10^{-3}	0	9×10^{-3}	0	