

BabyIAXO Micromegas detectors

David Díez Ibáñez on behalf of the IAXO collaboration

XV CPAN days, 2-6 October 2023 Santander - Spain

Solar axions and helioscopes

CAST helioscope

CAST is the most sensitive helioscope so far...

Future IAXO helioscope

IAXO-The International Axion Observatory

- Super toroidal magnet
 - 20 meters long
 - Magnetic field up to 5.4 T
 - 8 bores of 60 cm Ø
- Dedicated X-ray optics
 - 0.2 cm² focal spot
- Tracking system
 - Based on gamma ray telescopes
 - 50% of Sun-tracking time
- X-ray detector technologies
 - Micromegas
 - GridPix
 - Metallic Magnetic Calorimeters (MMC)
 - Transition Edge Sensors (TES)
 - Silicon Drift Detectors (SDD)

CERN-SPSC-2013-022

IAXO aims to improve CAST sensitivity to solar axions in 1 order of magnitude!

BabyIAXO helioscope

BabyIAXO is currently under construction and DESY!

Sensitivity and physics potential

Sentitivity prospects

Parameter space showing the sensitivity of the experiments in the $g_{a\gamma}$ - m_a plane

- Coupling constant to photons g_{aγ}
- Axion mass m_a

CAST has reached similar levels to the most restrictive astrophysical bounds. Nature Physics 4109 (2017)

BabyIAXO:

- Probes part of the QCD band
- Improves signal-to noise ratio (SNR) by a factor >10² that of CAST

IAXO:

- Probes large generic unexplored ALP space, QCD axion models in the meV to eV mass band and astrophysically hinted regions.
- Improves SNR by a factor > 10^4 and sensitivity in $g_{a\gamma}$ by > 1 order of magnitude

BabyIAXO magnet

Superconducting magnet

- 2 parallel flat coils: 10m long.
- Conductor: standard Rutherford cable with 30-40 strands of NbTi/Cu
- 2 bores: 70 cm diameter; vacuum & buffer gas
- Optimized layout: maximum magnetic field at bores
- Cold mass at 4.5 K
- Minimal risk: straightforward and robust design choices

BabyIAXO x-ray optics

Dedicated X-ray optics

- Multilayer-coated segmented-glass Wolter-I optics
- Signal from the 0.7 m diameter bore focused to 0.2 cm² area
- Mature technology based on NASA's NuSTAR telescopes

Two different telescopes:

- Custom made telescope
 - 5 m focal length
 - Hybrid approach with different inner and outer optics to increase the diameter and cover the bore
- > XMM flight spare
 - 7.5 m focal length
 - Already available and compatible with BabyIAXO

BabyIAXO x-ray detectors

Ultra-low background X-ray detectors:

- Required to distinguish axion signal above the nominal background of the detector.
- Required background level 10⁻⁷ c keV⁻¹ cm⁻ ² s⁻¹ in the RoI [0-7] keV
- Current baseline is Micromegas, but other technologies (GridPix, MMC, TES and SDD) are under study.

State of the art on low-background techniques:

- Intrinsic radiopurity of the X-ray detector (measured at the LSC)
- Event discrimination (X-ray like events)
- Shielding strategies:
 - Radiopure copper
 - Lead shielding (20 cm)
 - Active muon veto (cosmic rays and secondaries)

Ultra-low background detector

Microbulk Micromegas gaseous detectors

- Very homogeneous amplification gap, uniform gain.
- Intrinsically radiopure.
- Good energy and spatial resolution.
- Pixelized readout gives topological information.

Performance tested in CAST

Micromegas

Readout pads

- Signal reaches the active volume through a mylar window.
- X-rays ionize the gas in the conversion region and the produced signal is read by the Micromegas.
- Data is analyzed with the <u>REST-for-Physics framework</u> (github.com/rest-for-physics).

Background studies

Background measurements at surface

Tests at surface UNIZAR with IAXO-D0

- Implementation of 4π muon veto.
- Testing if neutrons can be efficiently tagged.

Simulations

- Background might be limited by cosmic neutrons
- Hypothesis to be confirmed by IAXO-D0/IAXO-D1
- Cosmic neutron tagger is being designed and will be implemented in the simulations

Measurements at Canfranc

Underground tests with IAXO-D1

 Determine part of intrinsic and cosmic induced events

Background simulations

Veto system simulation

- Micromegas detector with vacuum pipe
- Lead shielding
- Three veto layers (scintillation plastics)
- Cadmium sheets for neutron capture
- Geant4 and Rest-for-Physics sofware
- Focused in muons and cosmic neutrons

- Geant4: simulate events
- Rest-for-Physics: analyse data and produce realistic signals

Background simulations

Background simulations

Geometrical correlation between vetoes

Muons

Neutrons

IAXO-D0 veto system

IAXO-D0 detector with veto system in Zaragoza

- Micromegas detector
 - 6x6 cm surface
 - 120 channels
 - Several detectors tested
- Calibration sources
 - 55Fe
 - UV lamp (Cu [8keV], Ti [4.5keV])
- 4π veto system
 - Plastic scintillators with light guides and photomultipliers (54 vetoes)
 - Cadmium sheets for neutron capture
- Gases
 - Argon + 1% Isobutane
 - Xenon(48.85%) + Neon (48.85%) + C4H10 (2.3%)
- Slow control and gas panel
 - Remote control (calibrations, gas pressure...)
 - Open loop or recirculation mode

IAXO-D0 setup: Triple layer veto system with cadmium sheets to discriminate neutron background

IAXO-D0 veto system

Data analysis

- Muons visible in time bin 185, trigger window.
- Delayed events could be neutrons
- Multiplicity cut: neutron events trigger many vetoes

- Region of interest: 2-7 keV
- Fiducial selection: 0.9mm radius
- Muons in time window
- Neutrons-> high multiplicity selection

Background level in 51 days data taking: 49 events \rightarrow 8.56 \times 10⁻⁷ counts keV⁻¹ cm⁻²s⁻¹

IAXO-D1 detector in the Underground Laboratory of Canfranc (LSC)

- Micromegas detector
 - Same as IAXO-D0
- Calibration sources
 - 55Fe
- > Almost 4π lead shielding
- ➤ Gases
 - Argon + 1% Isobutane
 - Xenon(48.85%) + Neon
 (48.85%) + C4H10 (2.3%)
- Slow control and gas panel
 - Remote control (calibrations, gas pressure...)
 - Open loop or recirculation mode
- Measure intrinsic background

Low gain run for alphas

- Data taking conditions:
 - Xe + Ne + Isobutane mixture
 - HVMesh = 230 V
 - HVDrift = 750 V
 - Gas flow 2 l/h (recirculation)
- Using dedicated analysis for the reconstruction of alpha tracks (AlphaCAMM):
 - Detailed reconstruction of origin and end of the tracks
 - Reconstruction of polar angle
- > Low gain run results:
 - 608 alphas in 15.3 days inside fiducial area (r<2cm)
 - Extrapolated ²²²Rn activity [6 12] Bq m⁻³

Background run with argon

Background status

- IAXO-D0 background in Xe with 51 days, [2-7] keV (r<1 cm): 8.56 × 10⁻⁷ c keV⁻¹ cm⁻² s⁻¹ at surface level
- ➤ IAXO-D1 underground background level in Xe with 45 days, [2-7] keV (r<1 cm): 33 counts → (5.41 +/- 0.94) × 10⁻⁷ c keV⁻¹ cm⁻² s⁻¹
- ➤ IAXO-D1 underground background level in Ar with 39.15 days, [2-7] keV (r<1 cm) 9 counts → (1.69 +/- 0.56) × 10⁻⁷ c keV⁻¹ cm⁻² s⁻¹

Thank you !!!

Back up

BabyIAXO Micromegas detectors

Micromegas detectors

Pulse simulation on vetoes and detector

BabyIAXO Micromegas detectors

Neutron simulations

Calibration run with argon

- > Data taking conditions:
 - Ar + 1% Isobutane mixture
 - HVMesh = 320 → 315 V
 - HVDrift = 750 V
 - Pressure 1.25 bar
 - Gas flow 2 l/h (open loop)
 - ⁵⁵Fe calibration source

X-ray window

