# TREX-DM experiment at LSC: status, prospects and low-energy calibration

Óscar Pérez Lázaro oscarperlaz@unizar.es PhD student at CAPA, Universidad de Zaragoza XV CPAN days, Santander, 02/10/2023







#### Motivation

• Dark Matter searches focused on WIMPs are gradually shifting to very

low masses (< 10 GeV/c<sup>2</sup>)

• To successfully explore this mass

region in direct searches, we need:

- Light nuclei as target
- Very low energy threshold (< 1 keV<sub>ee</sub>)
- Low background level



#### TREX-DM

- **TREX-DM** is an experiment conceived to look for **low-mass WIMPs**
- Gas TPC (cylindrical copper vessel) holding ~ 20 liters of pressurized gas: ~ 0.3
  kg Ar or ~ 0.16 kg Ne @ 10 bar
- Using novel Micro-MEsh Gaseous Structure (Micromegas) readouts
- Located at the Canfranc Underground Laboratory (LSC) with a depth ~ 2400 m.w.e.









#### Detector: Micromegas







Advantages for **rare-event experiments**:

- Topological information: to discriminate background from expected signal by dark matter (few microns track → point-like event)
- Use of radiopure materials: kapton and copper, potentially very clean → low
  background
- Potential to reach low energy thresholds
- Scaling-up

#### Detector: Micromegas

- Two Microbulk Micromegas readouts: the largest surface (~25x25 cm2) ever produced with this technology.
- **512 channels**: 256 X strips, 256 Y strips, ~1 mm pitch
- Flat cables to extract the signals and connectors made of radiopure material
- Detectors upgraded in June 2022:











### Shielding



#### DAQ outside the shielding

#### **Neutron shielding** foreseen: **polyethylene** ceiling + **water** tanks



#### Status: Energy threshold

- After detector upgrade in June 2022  $\rightarrow$  **15-20% fewer dead channels**  $\rightarrow$  improved threshold
- Threshold ~ 1 keV<sub>ee</sub> is limited by signal-to-noise ratio and trigger efficiency at low energies



#### Prospects: Energy threshold

• Idea: improve Micromegas gain adding a Gas Electron Multiplier (GEM)

stage on top of the Micromegas planes  $\rightarrow$  increase signal-to-noise ratio





#### Prospects: Energy threshold

- **Results** in test bench: combined **GEM-MM set-up**: **x10-100** pre-amplification factor  $\rightarrow$  potential to lower  $E_{thr}$  down to **single ionization electron** energies (**~ 20 eV**<sub>ee</sub>)
- Plans to install a GEM foil on top of TREX-DM readout planes in the coming months



### Low-energy calibration: why?

• Dark Matter searches focused on WIMPs are gradually shifting to very

low energy thresholds (**sub keV**<sub>ee</sub>)

• Important to understand the behaviour of the detector and the energy

reconstruction at those energies -> need for a low-energy calibration

with high statistics

### Why 37Ar?

#### • 37Ar ( $T_{1/2} = 35.04 d$ ) decays by electron capture, and provides two

characteristic x-rays for calibration at low energies: 2.82 keV (K shell,

probability 0.90) and 0.27 keV (L shell, probability 0.09)

- Gas + mono-energetic spectrum
  - $\rightarrow$  calibration that provides a

homogeneous illumination



### Why 37Ar?

• Ultra-low-background experiments such as XENON1T or NEWS-G

have successfully used it (<u>https://arxiv.org/pdf/2211.14191.pdf</u>)



#### 37Ar: how to obtain it

- Irradiation with thermal neutrons of Ar enriched with 36Ar: 36Ar(n,  $\gamma$ )37Ar (XENON1T)
- Neutron irradiation of Ca, e.g. in the form of CaO powder: 40Ca(n,a)37Ar (NEWSG)

| Isotope   | Nat. abundance (at.%) | Cross-section (mb) | Reaction    | Activation product | Half-life | Product decay γ-rays (k |
|-----------|-----------------------|--------------------|-------------|--------------------|-----------|-------------------------|
| Argon red | actions               |                    |             |                    |           |                         |
| Ar-36     | 0.337                 | Thermal: 5000      | n, γ        | Ar-37              | 35.1 days | None                    |
| Ar-38     | 0.063                 | Thermal: 800       | n, γ        | Ar-39              | 269 a     | None                    |
| Ar-40     | 99.600                | Thermal: 700       | n, Y        | Ar-41              | 110 m     | 1293.6 (99.2)           |
| Calcium i | reactions             |                    |             |                    |           |                         |
| Ca-40     | 96.941                | Thermal: 2.6       | n, a        | Ar-37              | 35.1 days | None                    |
|           |                       | Fast: 13           |             |                    |           |                         |
| Ca-42     | 0.647                 | Thermal: 680       | n, γ        | Ca-43              | Stable    | n/a                     |
|           |                       | Fast: 2.8          | n, p        | K-42               | 12.4 h    | 1524.7 (17.9)           |
| Ca-43     | 0.647                 | Thermal: 6700      | n, <i>γ</i> | Ca-44              | Stable    | n/a                     |
|           |                       | Fast: 1.89         | n, p        | K-43               | 22.2 h    | 372 (82), 616 (65)      |
| Ca-44     | 2.086                 | Fast: 0.003        | n, a        | Ar-41              | 110 m     | 1293.6 (99.2)           |
| Ca-46     | 0.004                 | Thermal: 740       | $n, \gamma$ | Ca-47              | 4.54 days | 1296.8 (75.0)           |

### 37Ar: how to obtain it

- Ca irradiation has a larger fast-neutron cross section, but thermal neutron reaction can also take place (<u>https://doi.org/10.1007/s10967-018-6130-8</u>)
- Irradiation in a neutron reactor is faster and produces higher activities, but use of a **neutron source** also a possibility (e.g. AmBe source, *E* = 4.2 MeV, at **CEA Saclay facilities**)

| Isotope   | Nat. abundance (at.%) | Cross-section (mb) | Reaction    | Activation product | Half-life | Product decay γ-rays (keV) |
|-----------|-----------------------|--------------------|-------------|--------------------|-----------|----------------------------|
| Argon red | actions               |                    |             |                    |           |                            |
| Ar-36     | 0.337                 | Thermal: 5000      | $n, \gamma$ | Ar-37              | 35.1 days | None                       |
| Ar-38     | 0.063                 | Thermal: 800       | n, γ        | Ar-39              | 269 a     | None                       |
| Ar-40     | 99.600                | Thermal: 700       | $n, \gamma$ | Ar-41              | 110 m     | 1293.6 (99.2)              |
| Calcium   | reactions             |                    |             |                    |           |                            |
| Ca-40     | 96.941                | Thermal: 2.6       | $n, \alpha$ | Ar-37              | 35.1 days | None                       |
|           |                       | Fast: 13           |             |                    |           |                            |
| Ca-42     | 0.647                 | Thermal: 680       | η, γ        | Ca-43              | Stable    | n/a                        |
|           |                       | Fast: 2.8          | n, p        | K-42               | 12.4 h    | 1524.7 (17.9)              |
| Ca-43     | 0.647                 | Thermal: 6700      | n, Y        | Ca-44              | Stable    | n/a                        |
|           |                       | Fast: 1.89         | n, p        | K-43               | 22.2 h    | 372 (82), 616 (65)         |
| Ca-44     | 2.086                 | Fast: 0.003        | n, a        | Ar-41              | 110 m     | 1293.6 (99.2)              |
| Ca-46     | 0.004                 | Thermal: 740       | n, Y        | Ca-47              | 4.54 days | 1296.8 (75.0)              |



#### Tests at CEA Saclay (with SPC)





2.82 keV peak at around 1000 ADU:  $\approx$  1 Hz after 15 days of irradiation

### Set-up for TREX-DM





SS vessel with a hole performed to insert the neutron source: **solid angle optimisation** for irradiation (10<sup>2</sup>-10<sup>3</sup> Bq)

#### Status and Prospects: Background

• 2020-2022, background dominated by 222Rn: 600 c keV<sup>-1</sup>

**kg<sup>-1</sup> day<sup>-1</sup>** (= dru)

After a lot of effort, a solution was found: open-loop
 operation bypassing the filters and the recirculation pump
 → 100 dru (1-2 orders of magnitude higher than

background model)

- After installing cleaner detectors in June 2022, data analysis shows >90% background comes from intrinsic 222Rn progeny contamination on the surface of the mylar cathode
- Plans to install a more radiopure cathode in the coming months  $\rightarrow$  background estimate **1-10 dru**



#### Status and Prospects: Gas mixture

- In 2019-late 2022, Ne-2% isobutane was used
- Oct 2022-July 2023, data taking stopped due to experiment relocation (from Lab2400 to Lab2500: space restructuring needs from LSC)
- Ne difficult to acquire due to war → need to shift to Arbased mixtures
- Ar-1%isobutane currently used, but Lab2500 opens the possibility to go to lighter mixtures by increasing the isobutane content, e.g. Ar-10%isobutane (flammable) → improved sensitivity



#### Sensitivity prospects



| scenario | energy<br>thr<br>(eV <sub>ee</sub> ) | backgr<br>level<br>(dru) | isobut<br>(%) | time<br>exposu<br>(year) |
|----------|--------------------------------------|--------------------------|---------------|--------------------------|
| AAr1-400 | 400                                  | 10                       | 1             | 1                        |
| AAr1     | 50                                   | 10                       | 1             | 1                        |
| AAr10    | 50                                   | 10                       | 10            | 1                        |
| BAr10    | 50                                   | 1                        | 10            | 1                        |
| CAr10    | 50                                   | 0.1                      | 10            | 10                       |
| CNe10    | 50                                   | 0.1                      | 10            | 10                       |

## Thank you for your attention!!

## Back-up slides

### Detector: vessel & gas system

#### Vessel:

- Cylindrical vessel made of copper
- Designed to operate safely at 10 bar, certified as pressure equipment before installation at LSC





#### Gas system:

Designed for non-flammable gases, consisting of recirculation part + purification branch



#### Spherical Proportional Counter (SPC)



#### Spherical Proportional Counter (SPC)



Copper SPC at CEA Saclay

#### Spherical Proportional Counter (SPC)

Risetime and falltime  $\rightarrow$  drift time dispersion  $\rightarrow$  event selection: point-like vs. track, fiducialisation



#### Second try: background run (before 37Ar): cosmic rays

#### HV: 1600 V, gas Ar-2%CH4, pressure 600 mbar, duration 1300 s



#### Second try: background run (before 37Ar): LE spectrum



#### Second try: 37Ar run: cosmic rays (≈ same gain)

HV: 1600 V, gas Ar-2%CH4, pressure 600 mbar, duration 5800 s



#### Second try: 37Ar run: LE spectrum



37Ar spectrum: 2.82 keV peak at around 1000 ADU? Rate < 1 Hz...

#### Second try: 37Ar run: LE part





Falltime vs. amp

#### Risetime vs. amp

#### Initial results: x2-x3 flux, constant irradiation $\rightarrow$ higher rate



Last success: home made Ar-37 source Using Ca-40 powder About 40 hz after 14 days Of neutron irradiation: 7x10<sup>6</sup>neutrons/s



#### Initial results: much better resolution...







### Background model: simulation

- Detailed geometry including shielding
- Based on Geant4 (Physics processes) + REST code (electron generation in gas, diffusion effects during drift, charge amplification at Micromegas, signals at mesh and strips)
- Inputs for main background sources
  - Measured fluxes of environmental backgrounds in Canfranc ( $\gamma$ , neutrons,  $\mu$ )
  - Activity measurements from an extensive material screening program underway for several years to select components for design of set-up, mainly based on germanium gamma spectrometry at LSC
- Points to 40K in the Micromegas detectors as the main limiting source of background
- The expected background levels are in the range 1-10 c keV<sup>-1</sup> kg<sup>-1</sup> day<sup>-1</sup> (= 1-10 dru)



- Since first runs in 2020, evidence of contamination from Rn.
- Special low gain (HE) runs • show alpha events:



Borders

×10<sup>3</sup>

2000

125 X [mm]

Inner

1600

Threshold Integral (AU)

1200



X [mm]

- Black: "5 MeV peak" (5.5 + 6.0 + 5.3) and "7 MeV peak" (7.7 MeV)
- Inner: Rn + progeny .
- **Borders: surface** • 210Pb (5.3 MeV from 210Po)

#### Filters in the gas system



#### Left: H2O; right: O2



- LE and HE runs during 1 month in seal mode
- They supported the hypothesis of Rn + constant component: decrease in alpha rate and background rate in 0-50 keV after cuts



Nominal-gain runs (low energy)  $c_0 + c_1 e^{-c_3 t}$ 





Background @ low energies



- Internally emanated Radon is the main source of background (removing it takes us from ~600 dru down to ~100 dru in the 0-50 keV range)
  - A lot of effort put into removing it from the system:
    - Trying with several commercial filters
    - Testing 5Å molecular sieves (we found out they do trap Rn, but emanate more than Agilent filters, best commercial filters we have)
    - Testing a custom-made O2+H2O filter developed by the University of Birmingham with low-emanation materials (ongoing collaboration with NEWS-G)
    - Testing activated carbon filters
    - Open-loop operation bypassing the filters and the recirculation pump
- Rn progeny surface contamination may well be responsible for the rest of background not accounted for in our background model
  - A program to identify alpha surface contaminations + its mitigation is ongoing

#### Open loop: no longer a Rn spectrum, only surface contamination



#### Background level comparison: seal mode in June 2021 vs. open loop



#### 40K issue in microbulks

| Micromegas<br>id | 40K activitywith<br>GeAnayet (μBq/cm²)* | Dead channels number<br>(out of 512) | Maximum voltage<br>reached at mesh |
|------------------|-----------------------------------------|--------------------------------------|------------------------------------|
| MM4S_1           | Not measured but should be like #2 & #3 | 5                                    | 300 V                              |
| MM4S_2           | 1.07 ± 0.23                             | 2                                    | 295 V                              |
| MM4S_3           | 1.07 ± 0.23                             | 0                                    | 305 V                              |
| MM4S_4           | < 1.2                                   | 3                                    | 280 V                              |
| MM4S_5           | < 1.2                                   | 4                                    | 285 V                              |



\* Previous value of 40K activity (in background model) =  $3.45 \pm 0.40$  $\mu$ Bq/cm<sup>2</sup>

Factor of x4 (probably more) improvement demonstrated (this theoretically brings 40K in back. model to levels well below 1 dru)

Publication on microbulk radiopurity in preparation...

Radiopurity measured on 1m2 witness samples that underwent exactly the same chemical process than the microbulk readouts



### Detector performance

- Characterization of Microbulk Micromegas in non-flammable gases in a simplified set-up
  - Ar+1%iC<sub>4</sub>H<sub>10</sub> and Ne+2%iC<sub>4</sub>H<sub>10</sub> at 1-10 bar
  - Source: <sup>109</sup>Cd



#### Micromegas readouts

• Giomataris, Charpak (96)



## Micromegas readouts



| Beyond                         | Started development with CNM                                                                                              |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| microbulk?                     | Micromegas structures with Si-wafer                                                                                       |
| Microfabricate<br>d Micromegas | microfabrication techniques<br>Higher Flexibility & precision in geometrical parameters<br>Better tailored to application |

### Micromegas readout planes



- Bulk @ IRFU/Saclay.
- PCB @ Somacis.
- Area: 25.2 x 25.2 cm<sup>2</sup>.
- Squared pads 332 μm, pitch 583 μm.
- Interconnected to 432 strips/direction.



- Made out of copper & polyimide (kapton)
  - potentially very radiopure
- High gap homogeneity
  - good energy resolution
  - Stability/homegeneity in response





de Oliveira's

workshop at CERN

#### Flow optimisation in open loop: 109Cd calibrations

#### $0.9 \ln/h \Rightarrow$ one renovation every 11.5 days





#### Surface alphas (Rn progeny)

Rn progeny (Pb210) attached to surfaces (from past exposure) produces alpha events, but also LE events (in similar proportion)





### Detector: calibration system

#### • Design:

- Two exempt <sup>109</sup>Cd sources (8  $\mu$ Ci, emissions at 3, 22, 25 and 88 keV) on the side of the vessel, each facing one detector active volume
- A lever to move a 6 cm-thick copper piece, which blocks all the radiation emitted by the source.



0



- Status:
  - Design validated by a leak-test
  - New pieces being built at the LSC workshop