

Nuclear recoil QF measurement for ANAIS-112

David Cintas on behalf of the ANAIS research team

J. Amaré, J. Apilluelo, S. Cebrián, **D. Cintas**, I. Coarasa, E. García, M. Martínez, M.A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, J. Puimedón, T. Pardo, A. Salinas, M. L. Sarsa, P. Villar

L International Meeting on Fundamental Physics and XV CPAN days October 2nd, 2023

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

DAMA/LIBRA modulation signal

- At LNGS
- 5x5 NaI(Tl) crystals, 9.7 kg each

DAMA/LIBRA modulation signal

- At LNGS
- 5x5 NaI(Tl) crystals, 9.7 kg each
- Signal compatible with DM annual modulation considering SHM*
 - 13.7 σ C.L. in [2,6] keV
 - 11.8 σ C.L. in [1,6] keV

2-6 keV

David Cintas González

Nuclear recoil QF measurement for ANAIS-112

October 2, 2023 XV CPAN days, Santander (Spain)

Model independent test with ANAIS-112

- Taking data since August 2017 at LSC Hall B
- 3x3 NaI(Tl) crystal modules, 12.5 kg each
- Multi-component shielding
- 3 years results support an absence of modulation

Amaré et.al. Eur. Phys. J.C 79 (2019) 3, 228

David Cintas González

Nuclear recoil QF measurement for ANAIS-112

October 2, 2023 XV CPAN days, Santander (Spain)

Model independent test with ANAIS-112

 Electron Recoils (ER) produce much more light than Nuclear Recoils (NR) of the same energy. The ratio of both light signals is the QF:

$$QF(E) = \frac{L_{nr}(E)}{L_{er}(E)}$$

- Experiments calibrated with ER, but DM particles are expected to produce NR
- Results must be compared in NR energies, which requires a precise knowledge of the QFs
- Determining the QF is crucial to support the direct model independent testing of DAMA/LIBRA

Quenching Factor in Nal(TI) crystals

- High dispersion in QF meas. in NaI(Tl)
- Systematic in the result comparison with DAMA/LIBRA
 - DAMA QF are assumed constant: $QF_1 = 9\%$, $QF_{Na} = 30\%$
 - Most recent measurements: QF increasing with NR energy
- Better understanding of the QF in NaI(Tl) requires the evaluation of
 - Possible systematics in the measurement and analysis procedures applied
 - Possible intrinsic differences in the QF because of impurities, Tl doping, etc.

ANAIS-112 Neutron calibration program

- Complementary strategies followed in parallel
 - QF measured with monoenergetic neutrons at TUNL
 - ²⁵²Cf calibrations in ANAIS NaI(Tl) crystals onsite

QF measurements at TUNL

- Goal: to determine the Na and I QF of 5 NaI(Tl) crystals, analyzing a possible crystal dependence and reducing systematics affecting measurements and analysis
- Performed at TUNL (USA) in August and October 2018
- Collaboration between COSINE, COHERENT and ANAIS members
- Measured 5 different NaI(Tl) crystals
 - Different powder quality
 - Cylindrical and small
 - Same set-up

Crystal $\#$	Run	Group	Powder quality	Length and ϕ (mm)
1	August	Yale	WS-I	25
2	August	Yale	WS-II	25
3	October	Yale	WS-III	25
4	October	Zaragoza	Std.	15
5	October	Zaragoza	WS-III	15

David Cintas González

Nuclear recoil QF measurement for ANAIS-112

QF measurements at TUNL: Set-up TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

- Neutron detectors (LS, EJ-309) •
 - 18 Backing Detectors (BDs)
 - To measure the scattering angle (θ), and • then, the nuclear recoil energy

Nal(TI)

BDs

QF measurements at TUNL: Set-up TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

- Neutron detectors (LS, EJ-309) •
 - 18 Backing Detectors (BDs)
 - To measure the scattering angle (θ), and then, the nuclear recoil energy
 - o-deg Detector
 - Aligned with the neutron beam
 - TOF measurements for neutron beam • energy distribution

BDs

QF measurements at TUNL: Set-up TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

- Neutron detectors (LS, EJ-309)
 - 18 Backing Detectors (BDs)
 - To measure the scattering angle (θ), and then, the nuclear recoil energy
 - o-deg Detector
 - Aligned with the neutron beam
 - TOF measurements for neutron beam energy distribution 6000 5000
- Beam Pulse Monitor (BPM)

1400

Nal(TI)

BDs

QF measurements at TUNL: DAQ

- 2 digitizers Struck33161
 - 4-bit, 250~MHz and 16-channels
 - Éach one acts as a discriminator
- Trigger mode depends on measurement:
 - On-beam: any BD to avoid threshold effect
 - Calibrations: detector being calibrated
 - Background: any detector
 - Beam energy and TOF: o-deg detector
- Data stored:
 - Timestamp
 - 21 signals:
 - NaI(Tl) crystal
 - All BDs
 - Beam pulse monitor (BPM)

QF measurements at TUNL: Neutron selection in BDs

David Cintas González

QF measurements at TUNL: Nal(TI) energy estimator

• Integration window in the NaI(Tl) signal fixed to avoid threshold effect

QF measurements at TUNL: Neutron beam energy

- Neutron energy calculated with TOF from Li target and o-deg detector
 - 3 measurements at different distances
 - Neutrons and gammas identified

Samuel Hedges PhD thesis, Duke University, 2021

Run	Time resp. (ns)	E_P (keV)	Mean \mathbf{E}_n (keV)	Std. dev. $E_n(keV)$
August	3.40 ± 0.06	$2670.9^{+1.5}_{-3.1}$	958 ± 5	4 ± 3
October	1.21 ± 0.03	$2696.8^{+0.3}_{-0.8}$	982 ± 7	7 ± 5

David Cintas González

QF measurements at TUNL: GEANT4 simulation

• Objectives:

- Obtain nuclear Na and I recoil energy distributions for each BD triggered taking into account the full geometrical effects
- Obtain the average energies of the peaks in the NaI(Tl) crystal calibration with ¹³³Ba

QF measurements at TUNL: NaI(TI) energy calibration

Analysis of the effect of calibration in the QF estimate:

- **Proportional:** using single energy as reference (inelastic peak of ¹²⁷I at 57.6 keV)
 - Method followed by many of the previous experiments
 - Peak outside the ROI
- Non-proportional: linear response using three energy peaks of calibration with ¹³³Ba (average energies obtained with GEANT₄ simulation)

David Cintas González

Nuclear recoil QF measurement for ANAIS-112

QF measurements at TUNL: NaI(TI) energy calibration

Analysis of the effect of calibration in the QF estimate:

- **Proportional:** using single energy as reference (inelastic peak of ¹²⁷I at 57.6 keV)
 - Method followed by many of the previous experiments
 - Peak outside the ROI
- Non-proportional: linear response using three energy peaks of calibration with ¹³³Ba
 - Three peaks inside the ROI

Important differences in response at LE

David Cintas González

Nuclear recoil QF measurement for ANAIS-112

October 2, 2023 XV CPAN days, Santander (Spain)

QF measurements at TUNL: I QF result

- Using ¹²⁷I inelastic peak built for each BD signal (because direct elastic iodine recoil spectrum could not be disentangled)
- Quenched energy obtained as the energy difference for max and min. scattering angles
- Applied proportional calibration

 QF_{I} at 14.2 keV = 6.0 ± 2.2 % (average of crystals 2 and 3)

Compatible with previous measurements

QFI (DAMA) = 9 %

David Cintas González

October 2, 2023 XV CPAN days, Santander (Spain)

Energy (keV)

QF measurements at TUNL: Na QF calculation

- Na QF value obtained by fitting energy calibrated spectrum to a PDF built by adding three contributions
 - S_I : Iodine nuclear recoil from simulation
 - Converted into Eee with a fixed QF P
 - S_b : Background from experimental data
 - S_{Na} : Sodium nuclear recoil from simulation
 - Converted into Eee with a floating QF_{Na} for each BD
 - Gaussian convoluted considering two energy resolution models:
 - Constant with the energy
 - Poissonian energy dependence
- Systematic uncertainties from
 - Energy resolution
 - Calibration parameters uncertainties
 - Uncertainties in BD positions
 - Iodine QF value

$$PDF = N_I S_I + N_b S_b + N_{Na} S_{Na} (QF_{Na}, \sigma)$$

QF measurements at TUNL: Na QF results

- Results for the 5 Nal(Tl) crystals are compatible with each other in both scenarios
- The energy calibration is a critical issue in the determination of the QF
 - Non-proportional calibration: constant with energy (QFNa = 21.2 ± 0.8 %)
 - Proportional calibration: Increases with the energy

David Cintas González

QF measurements at TUNL: Na QF results

- The dispersion in QF_{Na} could be related with the different calibration in energy applied
- Further work is required to better understand the conversion from energy deposited into light in NaI(Tl), considering
 - Non-linear response
 - Surface effects
 - Other systematics

Different from our estimates

David Cintas González

QF measurements at TUNL: Na QF results

Quenching

- The dispersion in QF_{Na} could be related with the different calibration in energy applied
- Further work is required to better understand the conversion from energy deposited into light in NaI(Tl), considering
 - Non-linear response
 - Surface effects
 - Other systematics

In non-proportional calibration the response is extrapolated below 6.6 keVee (below ~ 30 keVnr)

David Cintas González

Neutron calibration program in ANAIS-112

7 calibrations runs with a ²⁵²Cf neutron source in ANAIS crystals onsite
GEANT4 model of ANAIS-112 allows to simulate these calibrations

T.Pardo et.al. Contributed to TAUP 2023

David Cintas González

Neutron calibration program in ANAIS-112

- 7 calibrations runs with a ²⁵²Cf neutron source in ANAIS crystals onsite
- GEANT4 model of ANAIS-112 allows to simulate these calibrations
- Measured and simulated spectra have been compared considering different QF models
 - DAMA QF meas. (QFNa = 30%, QFI = 9%)
 - QF_{Na}cte
 - $QF_{Na}(E)$
- Work in progress

T.Pardo et.al. Contributed to TAUP 2023

QF model comparison: Preliminary results

• DAMA QFs are not compatible with our data

Work in progress

T.Pardo et.al. Contributed to TAUP 2023

David Cintas González

QF model comparison: Preliminary results

 $QF_{Na}(E)$ provides a robust agreement, better than QF_{Na} cte Work in progress

Further investigation is required to better **understand multiple-hit** events and **include non-proportionality** issues in the simulation

T.Pardo et.al. Contributed to TAUP 2023

David Cintas González

Conclusions

- Not observed a crystal dependence of the QF_{Na} in NaI(Tl) using the same analysis and experimental approach
- Calibration method is a critical issue in the QF_{Na} estimation:
 - Proportional calibration: QF_{Na} increases with the energy
 - Non-proportional calibration (response extrapolation below 6.6 keVee): QF_{Na} constant with average value of QF_{Na} = 21.2 ± 0.8 %, between 10 and 80 keV
- GEANT₄ simulation of ANAIS-112 allows to simulate the neutron calibration with ²⁵²Cf sources and compare results with measurements considering different QF models
 - DAMA QFs are not compatible with our data
 - Energy-dependent QF_{Na} provides a robust agreement and seems to be favored over constant QF_{Na}
 - Plans to continue studying other energy dependences and to include the non-proportionality of detectors
- Further work is required to better understand the conversion from energy deposited into light in NaI(Tl) crystals
- Measurements of the QF for ANAIS detectors will be taken into account for the comparison with DAMA/LIBRA results and those from other targets

Thanks for your attention

David Cintas González

Nuclear recoil QF measurement for ANAIS-112

October 2, 2023 XV CPAN days, Santander (Spain)

QF measurements at TUNL: Neutron beam energy

- Neutron energy calculated with TOF from Li target and o-deg detector
 - 3 measurements at different distances
 - Neutrons and gammas identified
- Procedure followed to get En distr (*):
 - Simulate gammas and neutrons going from Li target to o-deg detector
 - Fit their TOF distributions considering the detector time response for different initial energies

Run	Time resp. (ns)	$E_P (keV)$	Mean \mathbf{E}_n (keV)	Std. dev. $E_n(keV)$
August	3.40 ± 0.06	$2670.9^{+1.5}_{-3.1}$	958 ± 5	4 ± 3
October	1.21 ± 0.03	$2696.8^{+0.3}_{-0.8}$	982 ± 7	7 ± 5

* Samuel Hedges PhD thesis, Duke University, 2021

QF model comparison: Systematic uncertainties

