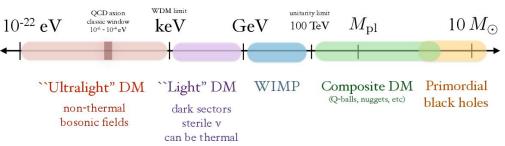


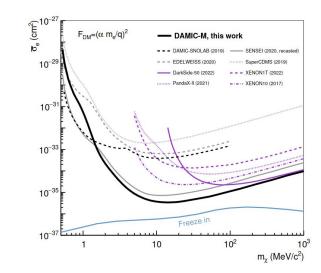
DAMIC-M: Status and First results

Agustin Lantero on Behalf of the DAMIC-M collaboration

CONSE LO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS



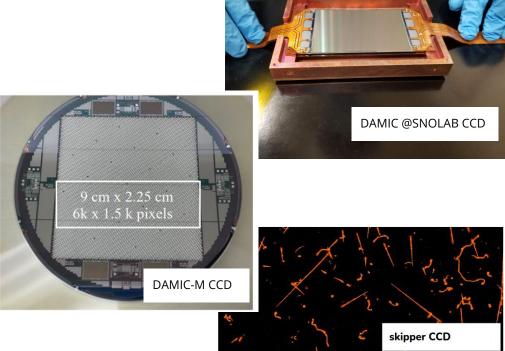
Mass scale of dark matter


(not to scale)

Dark Matter Searches

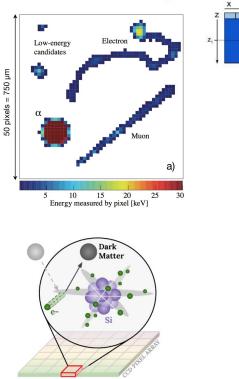
- **Dark Matter** (DM) existence is an observational evidence.
 - Cold Dark matter.
 - Local density 0.3 GeV c⁻²cm⁻³.
 - The Standard Model can not predict it's properties.
- The **search for sub-GeV** is yet to be explored in the following years with direct searches experiments:
 - Dark Matter scatters with the nucleons and electrons of the detector with low probability.
 - Detectors with low energy thresholds, low environmental backgrounds and large exposures.

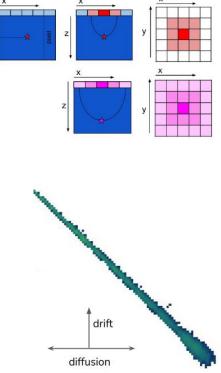
Lin, Tongyan. "TASI lectures on dark matter models and direct detection." arXiv: High Energy Physics - Phenomenology (2019): n. pag.



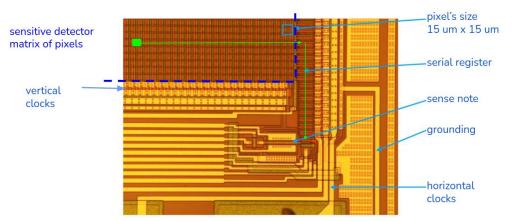
CCDs for Dark Matter Detection

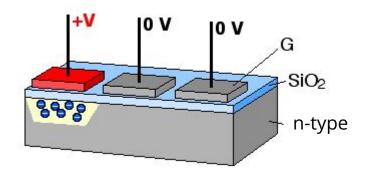
 Charged Coupled Devices (CCDs) are widely used in astrophysics experiments.


- Features:

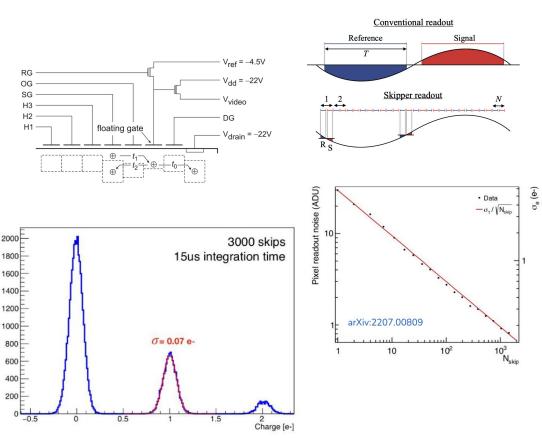

- Silicon
- Mono-crystal.
- n-type.
- High resistivity (>10,000 Ω cm).
- Three-phase polysilicon structure to keep and transfer the charge.

CCDs for Dark Matter Detection


- Particle interacts with the Silicon nucleus or electrons **generating charge** that is collected in the pixels.
- The charge is **diffused** to the contiguous pixels.
 - The dispersion of the charges will depend on the depth of the interaction.
- The trace of the interacting particle can be **reconstructed**.
 - The shape gives information about the type of particle.
- High spatial resolution.

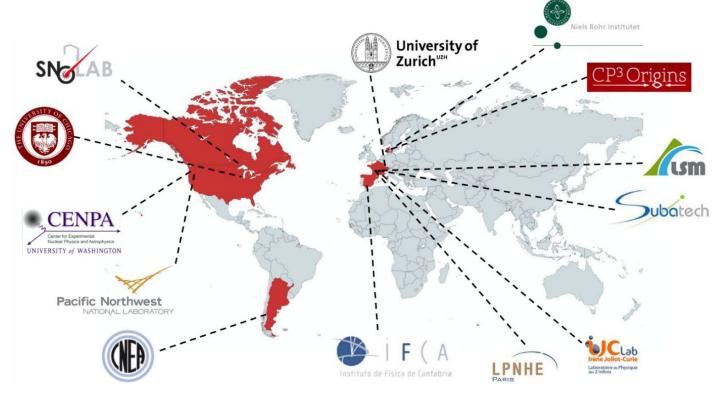


Charge transfer


- The pixel **charge is transferred** to the contiguous pixel by changes in the potential voltage of the gate phases.
- An **appropriate clocking** allows to move all the charge through all the pixels until reaching the amplifier.
- **Charge Transfer Inefficiency** (CTI) is quite low.
 - CTI ~ 10^{-6} e⁻/transfer.
- Amplifier converts charge into voltage.
 - This voltages are converted into **ADC** (Analog to Digital Conversion).

Skipper readout

- In 2017, the <u>new Skipper CCDs</u> demonstrated that a **pixel can be measured** *N* **uncorrelated times**.
 - Pixel charge is moved back a forward into the sense node and readed multiple times.
 - Reduce the subdominant low frequency amplifier noise *1/f*.
 - <u>Readout noise reduce by $1/\sqrt{N}$.</u>
 - For large number of skippers
 <u>sub-electron readout noise</u> is reached.

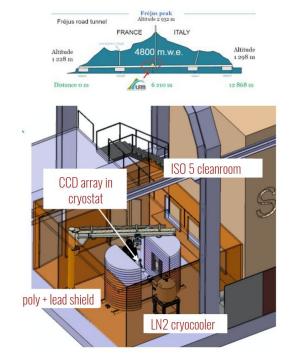


/0.01

oixels [

of

The DAMIC-M Collaboration

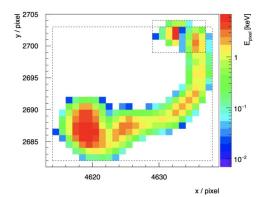


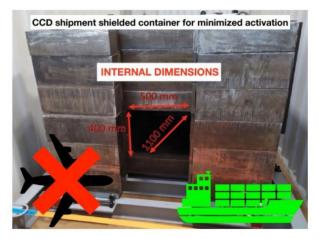
Dark Matter in CCDs at Modane (DAMIC-M)

- Laboratoire Souterrain de Modane (LSM).
 - 4800 water equivalent meters under Fréjus peak.
- Detector specifications.
 - 208 skipper CCD arrays.
 - 9 Mpixels, 675 μ m thick and m_{ccp}~3.5 g.
 - m_{detector}~ 700 g.
 - Single electron resolution and self-calibration.
 - Low dark current.

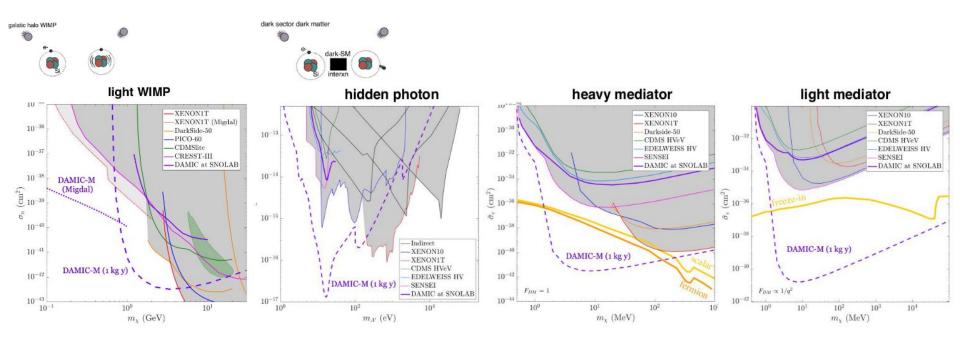
<u>Goals.</u>

- Few eV threshold.
- Fraction of dru (events/g/days) background.
- Nuclear and electron recoils detection in the sub-GeV mass range.

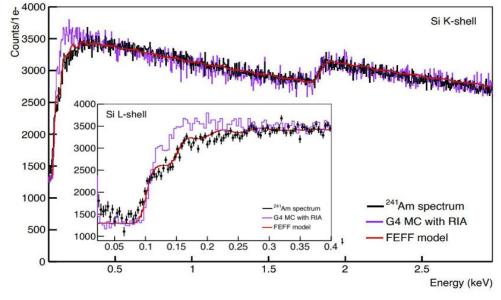



DAMIC-M: Background Mitigation

- **Geant4 simulations** of the setup and materials emission.
- Custom detector response simulation.
- Background rejection.
 - Identify surface events.
 - Spatial correlation in time between clusters.


- Background control.

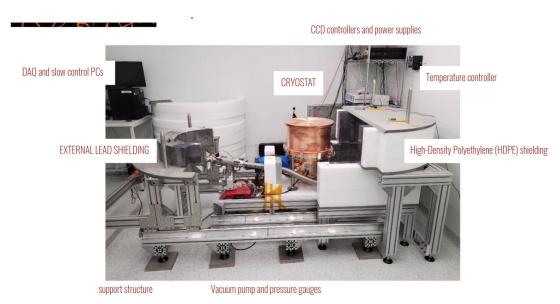
- Materials developed with cleaning procedures.
- Underground storage in radon free environments.
- Electroformed copper pieces (EFC).
- Ancient Lead.
- R&D on low background flex cables (PNNL, R. Saldanha LRT2022).


DAMIC-M: Sensitivity projections

First results (Chicago TC): Compton Scattering on Silicon

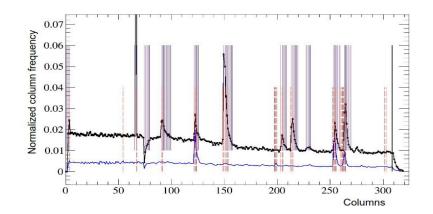
- First detection of Compton scattering on Si valence electrons below 100 eV down to 23 eV.
 - Observed scattering on valence L₁(150eV) and L_{2.3}(99.2eV) shells.
 - Measured at Chicago Test Chamber.

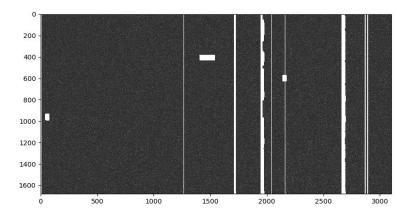
- Achievements:
 - Geant4 MC overestimates the scattering of the L-Shell.
 - **FEFF model tested to be more accurate** reproducing the L-Shell Compton scattering.
 - High efficiency and accuracy detection of energy deposits of a few e⁻ using skipper CCDs.



https://doi.org/10.1103/PhysRevD.106.092001

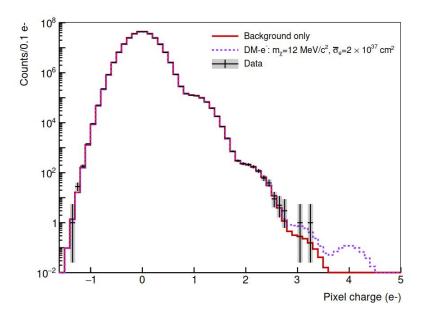
Low Background Chamber (LBC)


- DAMIC-M prototype at LSM.

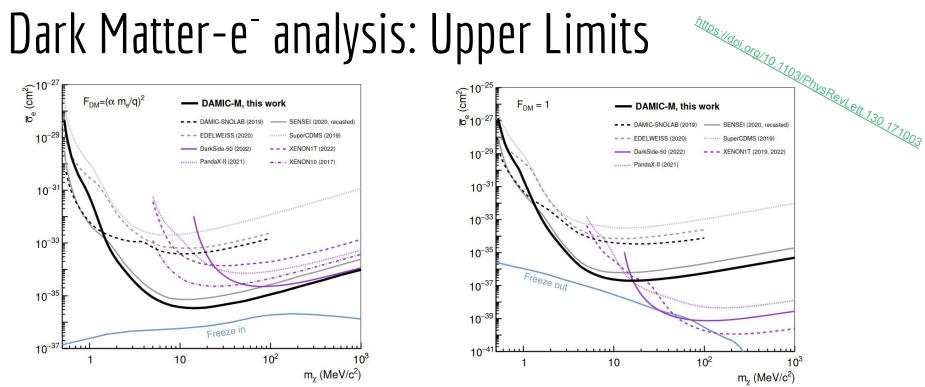

- <u>Objectives:</u>
 - Gain experience at LSM.
 - Characterize DAMIC-M background components.
 - Test of subsystems:
 - CCD controller and electronics.
 - Slow control.
 - DAQ.
 - Data transfer and storage.
 - DQM.
 - Science results with small detector (2CCDs).

LBC: Data processing

- Image selection.
 - Exclude large dark current images.
- <u>Pedestal subtraction.</u>
 - Subtract pedestal introduced by the readout amplifier.
- <u>Cluster reconstruction.</u>
 - Finding groups of charged pixels.
- <u>Masking.</u>
 - Remove clusters + CTI.
 - 10% pixels masked in commission runs.
 - 1% pixels masked in science run.
 - Amplifier cross talk evaluation.
 - Search for hot columns and defects.
 - Remove high charged columns.



Dark Matter-e⁻ analysis: PCD


- DM interacts with the e- of the silicon crystal lattice.
 - Rate of events calculated with **QEDark** (arXiv:1509.01598).
- Detector response simulated with a **custom diffusion model for the LBC CCDs**.
 - eV to e- conversion with low ionization yield (PRD 102,063026 (2020)).
 - This model gives the pixel distribution of electrons produced in the interaction.
- The resulting **pixel charge distribution** (PCD) is a convolution of:
 - Poissonian background.
 - Describes the dark current.
 - Gaussian readout noise.
 - Pedestal, readout noise and gain.
 - Expected signal rate.
- A **likelihood** fit to data is performed with this model for that masses.

Pixel Charge Distribution PDF:

$$p(q) = N \sum_{n_{tot}=0}^{\infty} \left(\left[\sum_{j=0}^{n_{tot}} S(j | \sigma_e, m_\chi) Pois(n_{tot} - j | \lambda_{tot})
ight] Gaus(q | \Omega[n_{tot} + \mu_0], \Omega \sigma_{read})
ight)$$

Dark Matter-e⁻ analysis: Upper Limits

- An upper limit with 90%CL is set for the cross section at different DM mass.
- World leading limit in the region [2,1000] MeV. -
 - DM daily modulation can improve the current limits in the < 2 MeV region (to be included).

Daily Modulation search: Model

- DM has an average direction set by the rotation of the Solar system around the Galactic center.
 - For large enough cross sections DM will interact with the different atoms forming the layers of the Earth.
- DM flux at the detector would change throughout the day due to the Earth screening.
 - The angle between the DM flux and the detector (γ) will change according to the rotation of the Earth.
 - Thus the DM velocity distribution will change with a period of ~23.92 hours.
- DAMIC-M expected background should be uniform with time.
 - The non-observance of periodicity in the signal will improve the upper limits set for the 1e- (**to be included**).
- Developing a semi-analytical model to describe the daily modulation for light DM.
 - Upgrading the Verne code for heavy particles (arXiv:1712.04901).
 - Particles masses ~MeV.
 - Dark Photon mediator and screening effects model.
 - Straight line trajectories.
 - Scattered and reflected components.
 - Comparing with the DaMaSCUS Montecarlo approach (arXiv:1706.02249)

Detector

 $\mathbf{r}_{\mathrm{det}}$

Earth

 $\langle \mathbf{v}_{\gamma} \rangle$

^f (v) (s/km)

0.004

0.003

0.002

0.001

$$\frac{\mathrm{d}R}{\mathrm{d}E_e} \propto \bar{\sigma}_e \int \frac{\mathrm{d}q}{q^2} \left[\int \frac{f(\mathbf{v},t)}{\mathrm{v}} \,\mathrm{d}^3 \mathrm{v} \right] \left| F_{\mathrm{DM}}(q) \right|^2 \left| f_{\mathrm{c}}(q,E_e) \right|^2$$

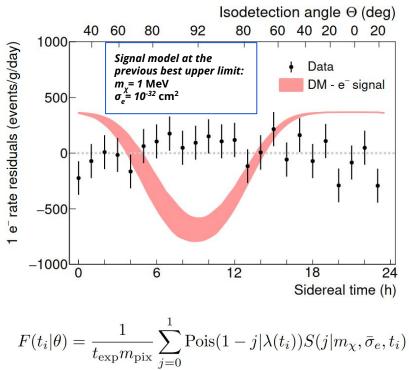
400

 $m_{\chi} = 1 \text{ MeV}$ $\sigma_{\rho} = 10^{-33} \text{ cm}^2$

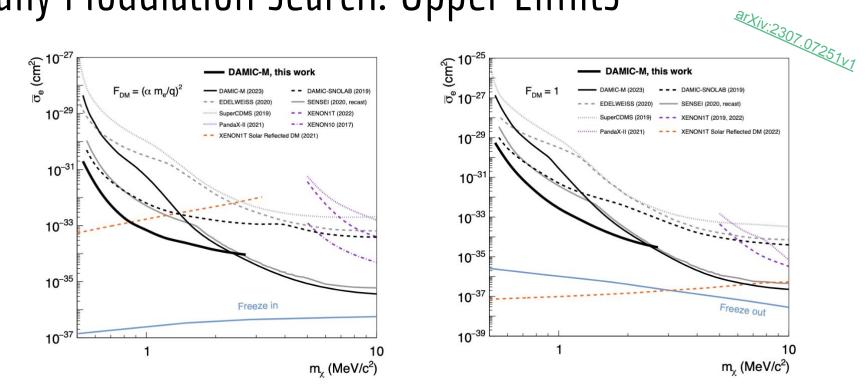
800

v (km/s)

 $-\Theta = 0^{\circ}$

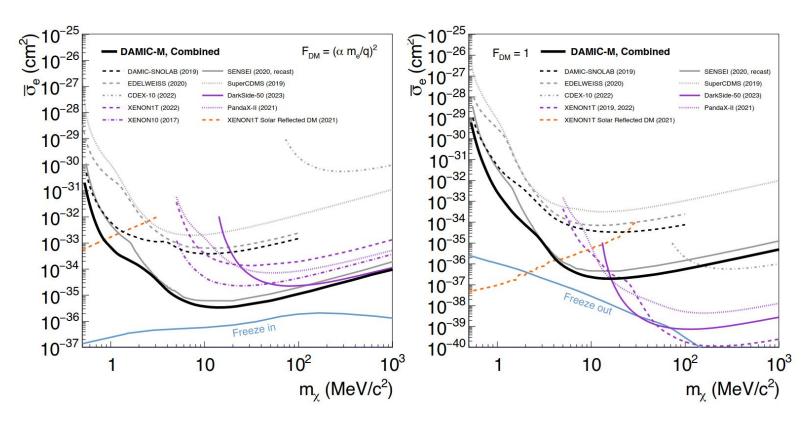

 $\Theta = 60^{\circ}$

— Θ = 90 °


600

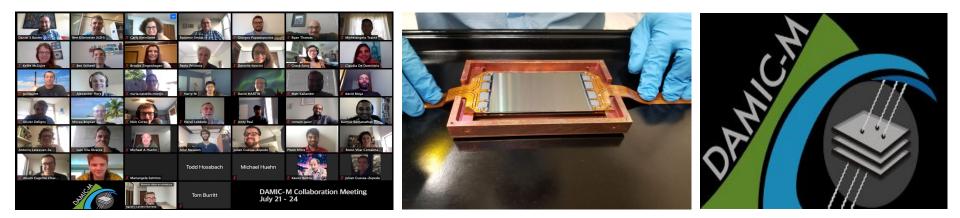
Daily Modulation search: Analysis

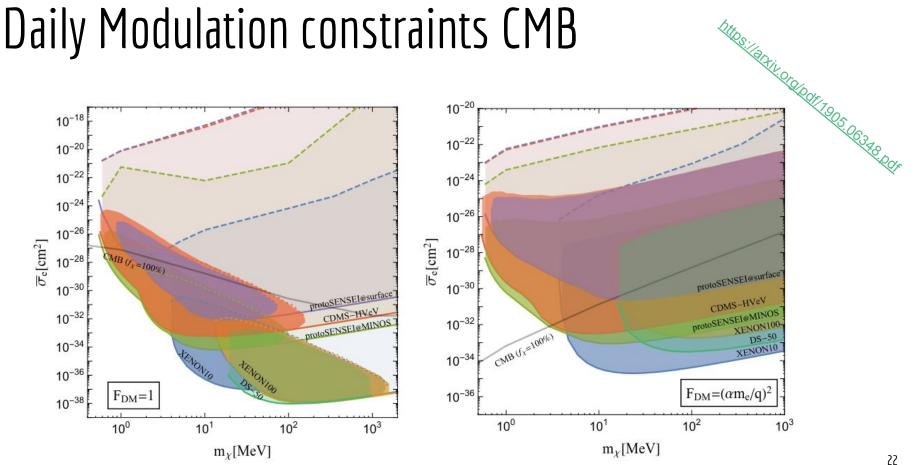
- A **likelihood** fit to data is performed using $F(t_i|\theta)$ for the mass parameter space.
 - A time-dependent signal + background model is used.
- The fit finds no preference for signal at any mass.
- The correspondent exclusion limits are obtained with a 90% C.L.



Daily Modulation search: Upper Limits

This analysis improved by ~2 order of magnitudes our previous PRL limits below 3 MeV.


Dark Matter-e⁻ full search: Combined Results



Summary

- LBC installed and operational at LSM.
- Scientific data taken under low background conditions and optimised readout noise.
- World leading DM-e scattering limits with 85.2 gr-days exposure.
- DAMIC-M aim to reach 1 kg-years exposure with skipper CCDs and a fraction of dru.
- The experiment will start in 2024.

Thank you for your attention!

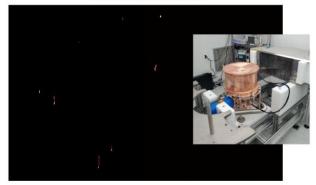
LBC Timeline

2021

2022

2023

Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
LBC Ins	tallation	Commissioning the detector Assembly of the full external shield Installation of the second electronics 	Two low dark current science runs	 Installation of electro-formed copper (EFC) lids improvement of light tightness 	Background runs with EFC lids	 Installation of automatic moving structure for the external shield Installation of CCD modules. 	Commissioning CCD modules


LBC data sets

- Internal shield (Feb-May 2022).
 - Commissioning runs.
 - Verify performance of detector.
 - Optimize CCD parameters.
 - 300 dru.
 - Dark current reduction with thermal cycles.


<u> Internal + External shield (May 2022 - Sept 2022).</u>

- Science runs.
 - 10 dru.
 - 0.2e- readout noise with 650 skippers.
 - Dark Current = $3 \cdot 10^{-3}$ e-/pix/day.
 - DM-electron analysis with 115 g·day.

Internal shield

Internal + external shield

