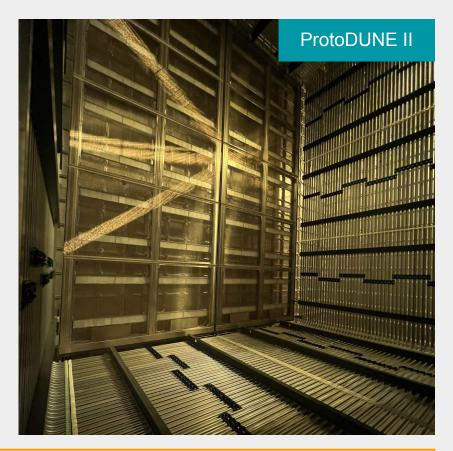
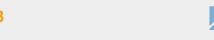
DUNE'S SENSITIVITY TO SOLAR NEUTRINOS

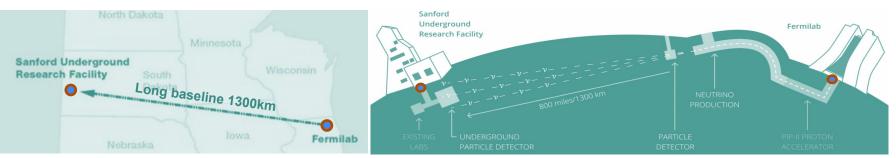
Sergio Manthey Corchado, on behalf of DUNE collaboration


CEMAT, Madrid sergio.manthey@ciemat.es



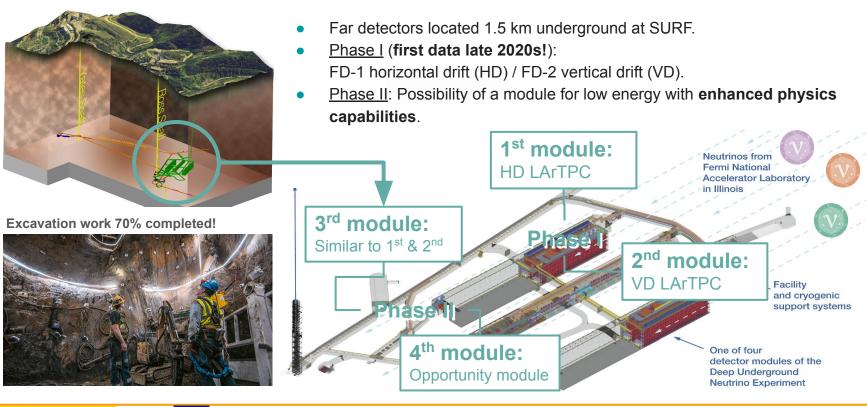
Outline:

- Introduction (DUNE's far detectors)
- Solar Neutrino Analysis:
 - Motivation
 - Theoretical Computation
 - Experimental Reconstruction
 - Background discrimination
- Summary



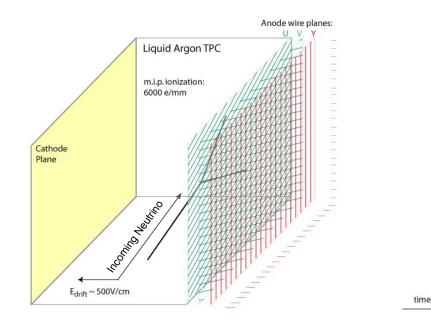
DUNE (Deep Underground Neutrino Experiment)

- High purity v_{μ}/\bar{v}_{μ} beam (0.5 7GeV): ~1.2MW (upgradable to 2.4MW).
- Dual-site experiment with main focus on precise v oscillation measurement (including CP violation & mass hierarchy determination).
 - **Near Site Facility:** multi-technology to measure unoscillated neutrino flux.
 - **4 Far Detectors:** total mass of ~70kT.
- DUNE aims to explore: BSM physics, supernova detection, Solar Neutrinos...



DUNE Far Detector Facilities

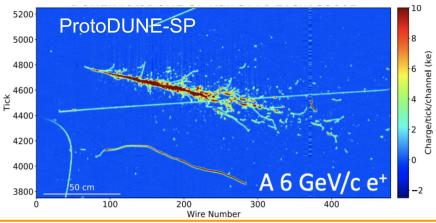
Ciemat


y Tecnológica

MINISTERIO DE CIENCIA

Liquid Argon Time Projection Chambers (LArTPC)

CPAN XV - 02 OCT 2023

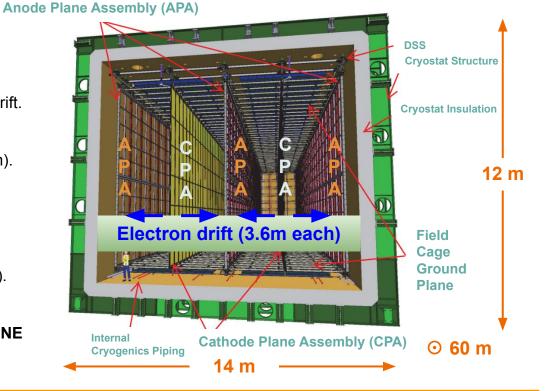


In DUNE additional PDS integrated for t₀, improved trigger, calorimetry & event reconstruction.

Ciemat

MINISTERIO

- 140% water density with ionization yield (42k e⁻/MeV).
- Electrons drift (~m/ms) to anode wire planes (APA)
- Argon scintillation light (40k γ/MeV) @128nm collected by PDS (~ns), providing t₀ for non-beam physics.
- Excellent 3D reconstruction, dE/dx & particle id. capabilities.



1st Module: HD LArTPC

- **Cryogenic** system (-184°C) for 17kt LAr.
- TPC charge readout system:
 - Electric field (~500V/cm) for 3.6m drift.
 - 150 APAs (6x2.3m²), 200 CPAs.
 - 3 view charge collection (pitch 5mm).
 - 384000 readout channels.
- PDS (Photon Detection System)
 Integrated in the APAs (<u>see Hamza's talk</u>).
- Technology tested at CERN with ProtoDUNE (~8x8x8m³) with full size components.

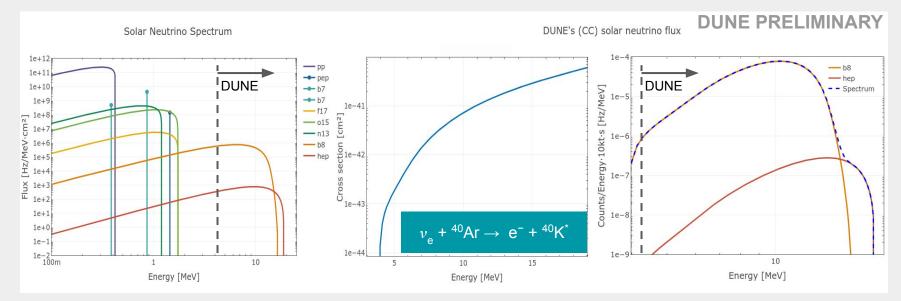
Ciemat

MINISTERIO

Solar Neutrino Analysis

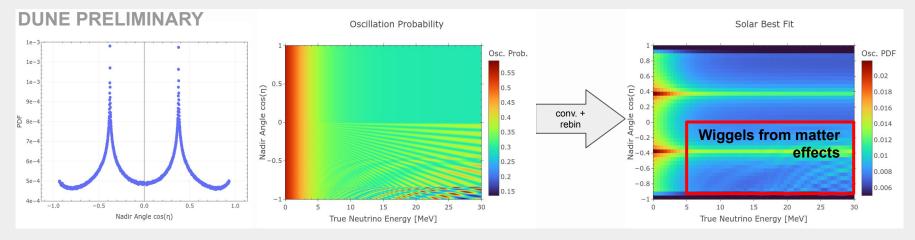
Motivation

- Due to its **high mass**, great exposure to solar neutrinos ~170k CC per 70kT·year.
- From solar neutrinos measure oscillation parameters (e.g. sin²Θ₁₂ best constrained by measurements of the differential flux (E.S./C.C.) of solar neutrinos).
- Currently, existing tension between measurement of Δm_{21}^2 wrt. nuclear reactor experiments.
- DUNE has the potential of measuring Δm²₂₁ from "wiggles" in the oscillation probability of detected C.C. neutrinos > 5MeV.
- Additionally, DUNE will measure the hep component of the solar spectrum (> 15MeV) for the first time, providing valuable contribution to solar modeling.
- Also interesting to study E.S. ($v_x + e^- \rightarrow v_x + e^-$) sensible to all flavours and directionality.


Theoretical Computation

Solar NuE Analysis: Solar Neutrino Flux

• Calculated from <u>BS2005</u> model and **X-Section** (<u>Marley</u>) \rightarrow **DUNE's solar neutrino interactions**:



• Solar analysis requires good background estimation around **10MeV**, energy **resolution <10%** & adequate preselection and **trigger conditions**.

Solar NuE Analysis: Neutrino Oscillations

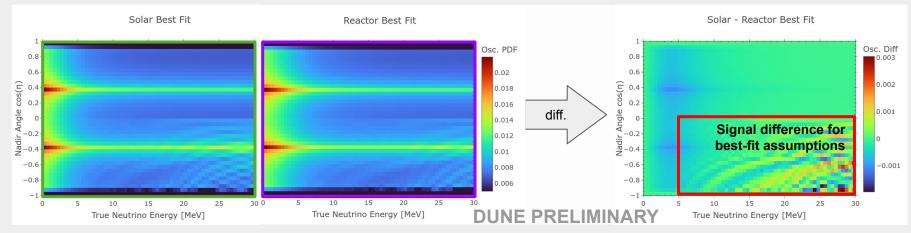
• Oscillation probability:

- $v_{\rm e}$ oscillate (main channel for solar C.C. $v_{\rm e}$ + $^{40}{\rm Ar}\,$).
- Convolve SURF's geographical solar incidence angle & v_e oscillation probability from <u>theo. calculation.</u>

 \rightarrow Wiggles produced by matter effects clearly detectable in 2D space representing ideal oscillation signal.

Accounting for oscillations:

- 170k Counts/70kT·year
- 8B \rightarrow 169k.
- hep \rightarrow 840.

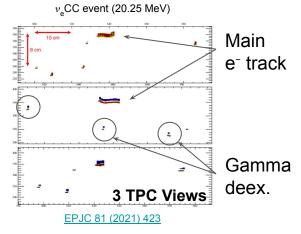

Expected >20 years exposure.

Solar NuE Analysis: Sensitivity

Goal \rightarrow Compute DUNE's sensitivity to oscillation parameters from fake data accounting for backgrounds and event reconstruction capabilities:

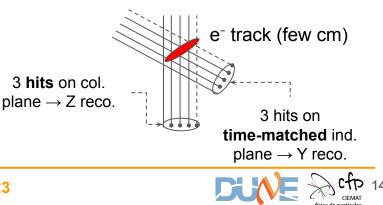
Energy range provides best fitting potential against experimental results.

- Solar (SNO): Δm²₂₁ = 6.0e⁻⁵eV², sin²θ₁₂= 3,03e⁻¹, sin²θ₁₃= 2,1e⁻²
- Reactor (KamLAND): $\Delta m_{21}^2 = 7.4e^{-5}eV^2$, $\sin^2 \Theta_{12}^2 = 3,03e^{-1}$, $\sin^2 \Theta_{13}^2 = 2,1e^{-2}$



Experimental Reconstruction

Solar Signal Channel:


$v_{\rm e}$ + ⁴⁰Ar \rightarrow e⁻ + ⁴⁰K^{*} \rightarrow ⁴⁰K + γ (+ N* γ)

- <u>LARSOFT</u> simulation \rightarrow Solar Neutrino Spectrum (4-20MeV).
- **PDS Hits** (detected photons) collected into flashes with t_0 & vertex reco.
- **TPC Hits** (drifted io. electrons) collected at APA.
- Hits grouped in Clusters according to time & wire proximity
- Event Preselection:

 \rightarrow Clusters (+3 hits) with collection + induction plane matching.

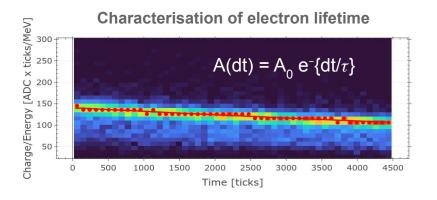
3D Event Topology

- \rightarrow Adj. cluster info for optimal event reconstruction and bkg rejection:
 - Collect adjacent clusters (gamma blip candidates).
 - Collect PDS flashes to reconstruct X coordinate (drift).
 - Save backtracked MC truth from energy deposits.

Counts

120

100


80

60

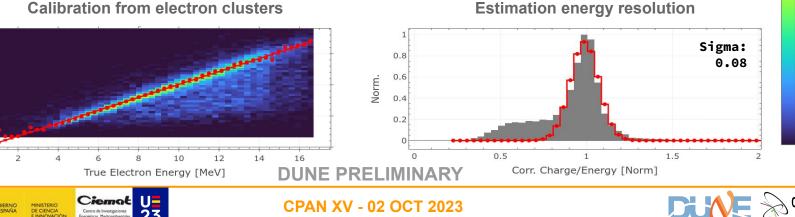
40

20

Charge Calibration:

Calibration from electron clusters

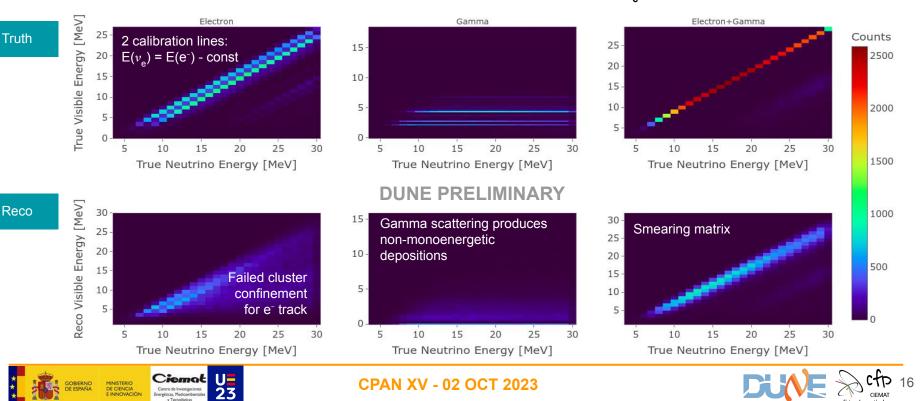
Reco Electron Energy [MeV]


15

10

5

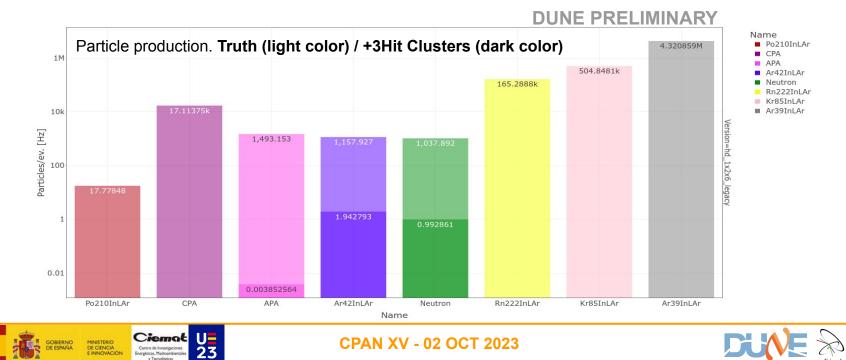
$$v_{\rm e}$$
 + ⁴⁰Ar \rightarrow e⁻ + ⁴⁰K^{*} \rightarrow ⁴⁰K + γ (+ N* γ)


- Drifting e⁻ through LAr \rightarrow lifetime ($\tau \sim 30$ ms).
- Full detector simulation of v_{a} interactions provides drift time (dt) profile.
- Assuming a matched PDS flash a cluster's energy reconstruction yields 8% resolution.

Energy Reconstruction:

$$v_{e} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*} \rightarrow {}^{40}\text{K} + \gamma (+ N^{*}\gamma)$$

• Basic strategy: add MainCl + AdjCl energy. In case of abundant bkg. reco v Energy from e⁻ + topology.


Background Discrimination

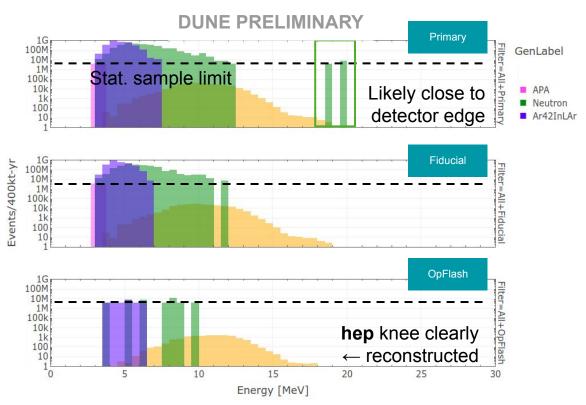
Background Model:

- Preliminary bkg study and contamination in preselection signal.
- **Currently updating** expected bkg from detector components and LAr with **radioassays**.

Reconstructed Energy Spectrum:

- Event candidates filtered to achieve clean neutrino sample.
- Select primary clusters

 (charge > adj. cluster charge) &
 fidutialize to remove bkg
 contamination.
- Requiring associated signal-like optical flash ensures reconstruction accuracy.

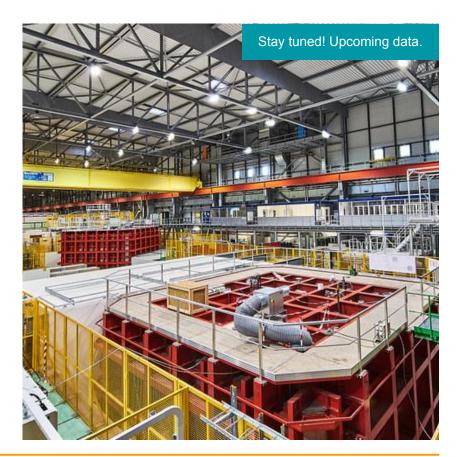

Ciemat

y Tecnológica:

MINISTERIO DE CIENCIA

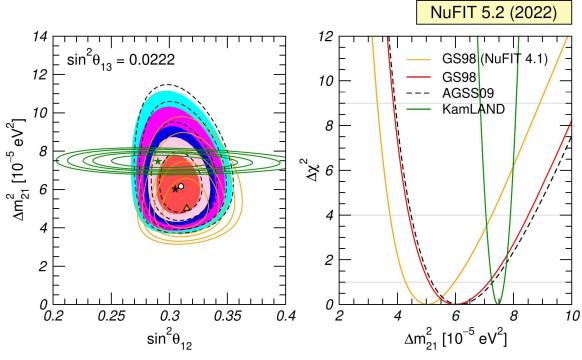
INNOVACIÓN

23


Summary

Summary:

- DUNE will have great exposure to solar neutrinos, measuring Δm_{21}^2 from wiggles in the oscillation map and the hep flux.
- Preliminary analysis shows DUNE's low energy reconstruction capabilities and background rejection in the ROI for solar neutrinos.
- Currently, working on **updated bkg model** to better evaluate solar sensitivity.
- Stay tuned for new data & analyses.



Thank you for your attention!

Best-Fit For Current Neutrino Experiments

Neutrino oscillations global fit.

