

Searches for electroweak production of SUSY particles with the CMS experiment

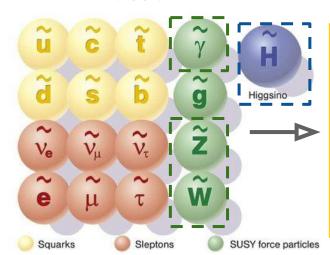
PABLO MATORRAS-CUEVAS

Instituto de Física de Cantabria (CSIC-Universidad de Cantabria)

On behalf of the CMS collaboration

XV CPAN (Centro Nacional de Física de Partículas, Astropartículas y Nuclear) Days Santander, Spain, 2nd October, 2023

Electroweak SUSY in a nutshell



- In general SUSY is constructed as an extension of the standard model (SM)
 - → Electroweakinos are mixtures of Winos, Zinos, photinos and higgsinos, whose mass eigenstates are charginos and neutralinos
- Relevant due to:
 - o Contribute to large corrections of the Higgs mass
 - Its lightest supersymmetric particle (LSP), typically the neutralino,
 is a good dark matter candidate

MSSM

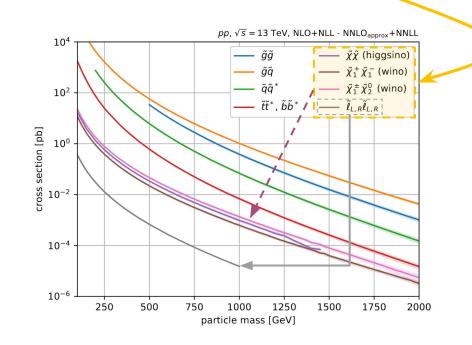
Masses accessible by the LHC (~order of the TeV)

$\begin{array}{c} \text{Charginos} \\ \widetilde{\chi}_{1}^{\pm} & \widetilde{\chi}_{2}^{\pm} \end{array}$ Neutralinos $\begin{array}{c} \widetilde{\chi}_{1}^{0} & \widetilde{\chi}_{2}^{0} & \widetilde{\chi}_{3}^{0} & \widetilde{\chi}_{4}^{0} \end{array}$

Electroweakinos

Electroweak SUSY: Challenges

Multiple SUSY models:

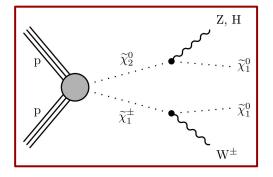

→ Particles' masses unknown and large parameter space to cover

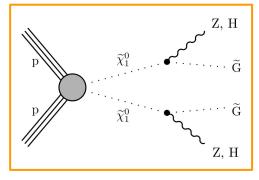
Challenges

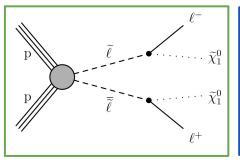
- Several SM processes with similar kinematics and large cross-sections (e.g. Drell-Yan, boson, diboson or ttbar production, also including jets)
 - → Compressed scenarios: Difficult signal to background separation
- o Electroweak (EWK) SUSY has small cross section, especially sleptons

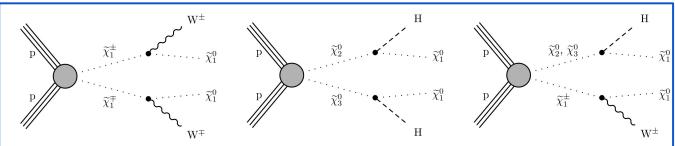
Several interesting Run-2 results address these difficulties:

- Exploiting the additional data and novel analysis techniques
- Combining analyses probing complementary phase spaces:
 - → CMS PAS SUS-21-008




Electroweakino Combination: Considered Models




- An improvement respect the previous Eletroweakino Combination (<u>JHEP03(2018)160</u>) using 2016 data that targeted the production of:
 - Wino-like chargino and neutralino, decaying via a bino like LSP neutralino
 - o Neutralino pair production in Gauge-Mediated SUSY breaking (GMSB), quasi degenerate Higgsinos
- Revisit the same interpretation with Run 2 data, including some improvements
- New interpretations also considered:
 - o Chargino/neutralino production in a Higgsino-bino interpretation.
 - Slepton pair production

CMS PAS SUS-21-008

Combination strategy

Leptonic analyses:

► 2/3l soft: <u>JHEP04(2022)091</u>

2l on-Z/non res:

JHEP04(2021)123

► ≥3l: <u>JHEP04(2022)147</u>

Hadronic/Semihardronic analyses:

► 1l 2b: <u>JHEP10(2021)045</u>

► 4b: <u>JHEP05(2022)014</u>

Hadr. WX: Phys.Lett.B842

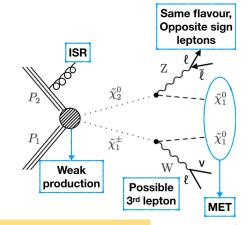
(2023) 137460

Search	Gaugino		GMSB		Higgsino-bino			Sleptons	
Search	WZ	WH	ZZ	ZH	HH	WW	HH	WH	$\ell^+\ell^-$
$2/3\ell$ soft	1								1
2ℓ on-Z	1		1	1					
2ℓ non-res.									✓
≥3ℓ	/ _	1	1	/	/			1	
1 <i>ℓ</i> 2b		1						1	
4b					1		1		
Hadr. WX	1	1				1		1	

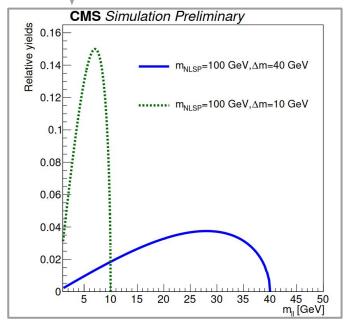
n.b. Overlaps between analyses' Signal Regions (SR) accounted for in combination

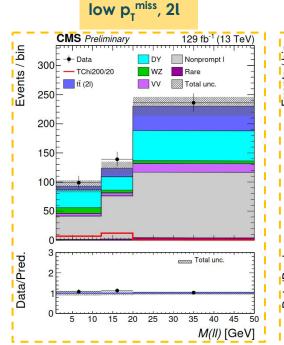
Leptonic input analyses

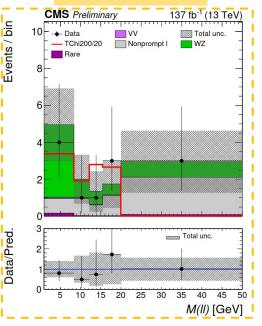
Leptonic analyses:


- 2/3l soft: <u>JHEP04(2022)09</u> (Compressed)
 - o "2l bin": Two opposite sign (OS) same flavour (SF) lepton pair,
 - o "3l bin": One additional SF lepton (e, μ)
 - o 3.5 (5) $< p_T(lep) < 30$ GeV for 2l (3l) bins and an ISR jet.
 - o Further binned in terms of p_T^{miss} and m_{II}
 - → New parametric signal extraction to improve sensitivity
- 2l on-Z/non res: JHEP04(2021)123 (Boosted)
 - o Two OS SF leptons (ee/ $\mu\mu$), with SR split in terms of p_T^{miss} .
 - o on Z analysis: 86<m₁₁<96 GeV, using standard jet (AK4) & wider (AK8) jet reconstructions, further splitting in terms of b-jet content.
 - o off Z analysis: 20<m_{II}<65 GeV & m_{II}>120 GeV
- ≥31: <u>JHEP04(2022)147</u> (Intermediate)
 - o ee/ $\mu\mu$ or 3/4l with up to 2 hadronic taus (τ_h) .
 - o p_T¹¹>25 GeV, p_T¹²>20 GeV

Search	Gau	gino		GMSI	3	Higg	gsino-l	oino
Search	WZ	WH	ZZ	ZH	НН	WW	НН	WH
$2/3\ell$ soft	1							
2ℓ on-Z	1		1	1				
2ℓ non-res.								
≥3ℓ	1	✓	1	1	1			✓


Optimisation of 2/31 soft analysis



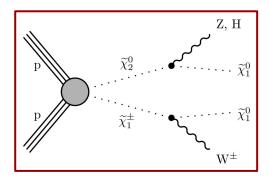

- Each mass hypothesis has different kinematics
 - Optimise binnings per each mass splitting wrt <u>JHEP04(2022)09</u>
 - o Use m_{II} as discriminating variable
 - \rightarrow Individual binning for each Δ m and SR.
 - Expected exclusion of Next to LSP improved by ~5-25 GeV

medium p_T miss, 3l

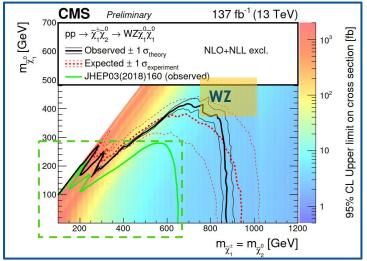
Hadronic & semihadronic input analyses

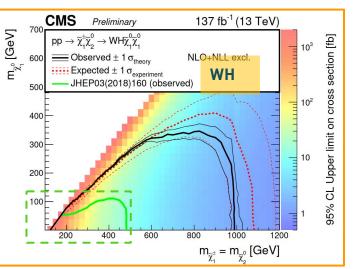
Hadronic & Semihadronic analyses:

- ► 1l 2b: <u>JHEP10(2021)045</u>
 - o $p_T^{l1}>30$ GeV, 2 b-tagged jets consistent with the Higgs boson mass, and large p_T^{miss} .
- ► **4b**: <u>JHEP05(2022)014</u>
 - o No leptons. Two Higgs boson, each H→bb
 - o SRs based on N_{b-jets} .
 - Also considering boosted topologies (with AK8 jets)
- Hadr. WX: Phys.Lett.B 842 (2023) 137460
 - o At least 2 AK8 jets, compatible with W, Z and H bosons.
 - o 2-6 AK4 jets
 - → New for Run 2 combination
- Additional sensitivity in the uncompressed spectra


Search	Gau	gino		GMSI	3	Higgsino-bino		
Scarcii	WZ	WH	ZZ	ZH	НН	WW	НН	WH
1 <i>ℓ</i> 2b		✓						✓
4b					✓		1	
Hadr. WX	1	✓				✓		✓

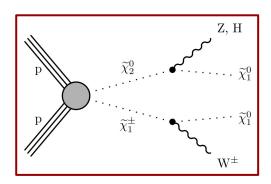
Chargino/neutralino production in WZ/WH final states

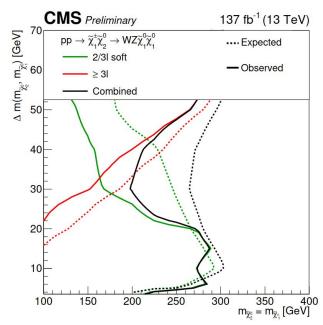


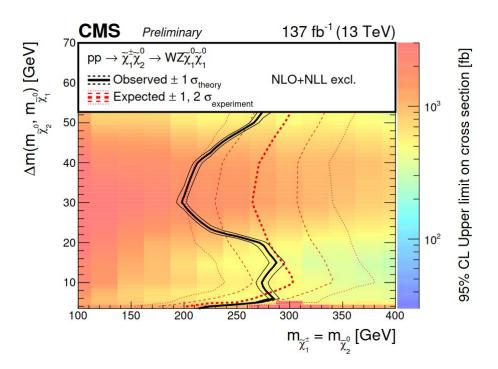

Several analyses contribute to the combined limit (more information in <u>backup</u>):

- Uncompressed region: dominated by Hadr WX analysis.
- Compressed region: 2/3l soft analysis (≥3l) in the WZ (WH) models.
- Expected limit significantly improved with respect to the 2016 combination

Search	Gaugino			
Search	WZ	WH		
$2/3\ell$ soft	1			
2ℓ on-Z	1			
2ℓ non-res.				
$\geq 3\ell$	1	1		
1 <i>ℓ</i> 2b		1		
4b				
Hadr. WX	1	1		

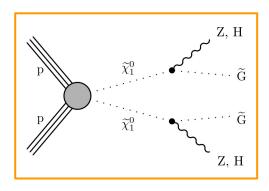



Chargino/neutralino production in WZ/WH final states Compressed

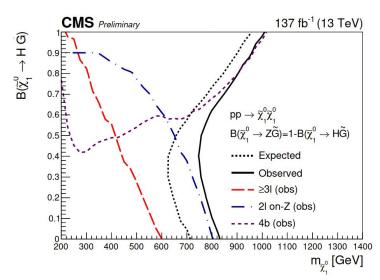


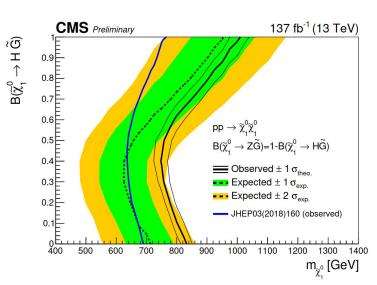
More challenging → Required full Run2 data as well as novel techniques

- ≥ 2/3l soft and ≥3l analyses complement each other.
 - Orthogonal lepton p_T
 - o Different discriminant variables
- Expected limits close gap at Δm~40 GeV, where a mild (2σ) excess is found



Chargino/neutralino production in GMSB models



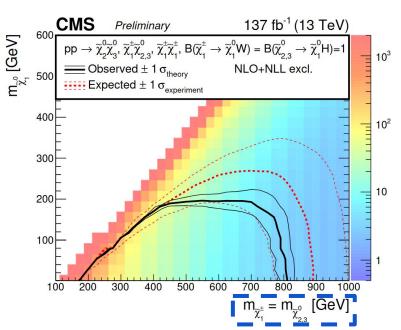

In GMSB models, χ_1^{\pm} , χ_1^0 and χ_2^0 have minimal mass splitting:

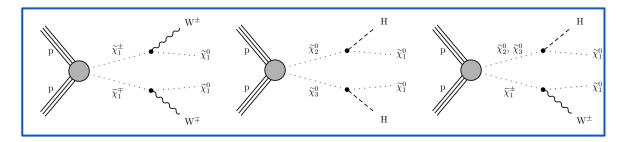
- Models can be reduced to χ_1^0 pair production, decaying to:
 - o Gravitino \tilde{G} with $m_{\tilde{G}}$ =1 GeV (LSP)
 - o SM neutral boson (Ž or H)
- Exclusion limits in terms of $B(\chi_1^0 \to H\tilde{G})$:
 - o **4b** analysis more sensitive at large $B(\chi_1^0 \rightarrow H\tilde{G})$
 - o Small B($\chi_1^0 \rightarrow H\tilde{G}$) dominated by **21 on Z** analysis

	Search		GMSI	3	
	Search	ZZ	ZH	НН	
_	$2/3\ell$ soft				
ΞĒ	2ℓ on-Z	1	✓		Г
	2ℓ non-res.				Γ,
ī	≥3ℓ	1	1	1	Г
- 1	1ℓ2b				
Ţ	4b			1	i
Ō	Hadr. WX			_	

Chargino/neutralino production in Higgsino-bino models

CMS


New interpretation wrt <u>JHEP04(2022)09</u>


- $\sim \chi_1^0$ as LSP, and a mass degenerate Higgsino triplet:
- Target either WW, HH or WH final states with:

o
$$B(\chi_1^{\pm} \to W\chi_1^{0}) = 100\%$$

o
$$B(\chi_{2,3}^{0} \to H\chi_{1}^{0}) = 100\%$$

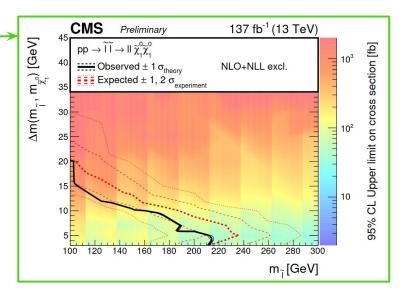
More sensitive to the uncompressed phase space

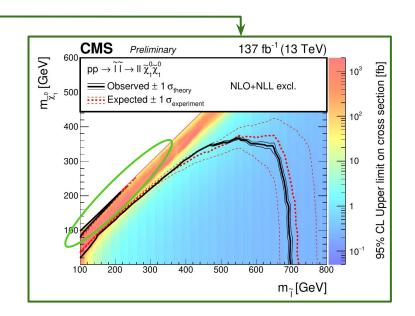
Search	Higgsino-bino						
Search	WW	НН	WH				
$2/3\ell$ soft							
2ℓ on-Z							
2ℓ non-res.							
≥3ℓ			✓				
1ℓ2b			✓				
4b		✓					
Hadr. WX	1		✓				

Slepton production

Particularly difficult due to their small cross sections.

- o Slepton as Next to LSP with lightest neutralino as LSP
- o 1st & 2nd generation (3rd covered in <u>CMS-PAS-SUS-21-001</u>)

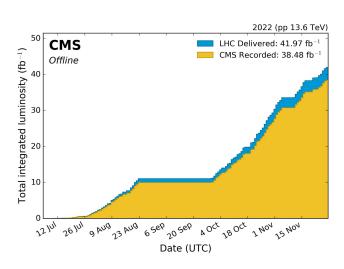



- o Similar SR as for Wino-bino interpretation
- o $m_{T_2}(ll,\chi)$ as discriminant variable:

$$m_{\mathrm{T2}}(\ell\ell,\chi) = \min_{\vec{p}_{\mathrm{T}}^{\mathrm{miss}(1)} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}(2)} = \vec{p}_{\mathrm{T}}^{\mathrm{miss}}} \left[\max \left(\mathbf{M}_{\mathrm{T}}^{1}(m_{\chi}), \mathbf{M}_{\mathrm{T}}^{2}(m_{\chi}) \right) \right]$$

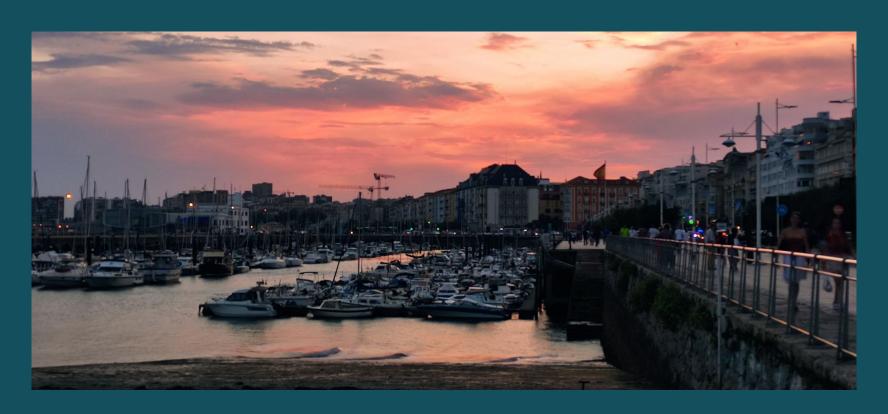
21 non resonant used for non compressed scenario:

o Equivalent SR as before



Summary and future prospects

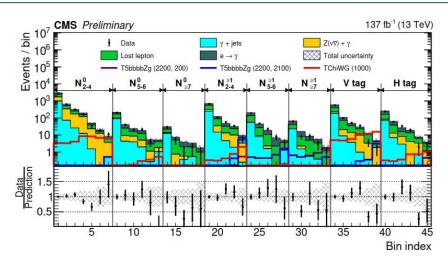
A combination of several EWK SUSY processes have been made.


- ★ Both leptonic and hadronic signatures considered
- ★ Various phase spaces probed, ranging from compressed to high mass splittings.
- ★ More sensitivity and new models considered wrt previous combination
- ★ No significant deviations from expectation found
- ★ Chargino excluded up to 1 TeV, and Higgsino to 990 GeV
- ★ Slepton mass excluded up to 215 GeV for ∆m=5 GeV and 110-720 GeV for ∆m=50 GeV
- → But there always is hope!
- Current exclusions come under assumptions that could be proven wrong.
- o Currently on Run-3 data taking period
 - → (Expect ~3x more luminosity than Run-2!)
- New phase spaces will become available (compressed area, even more boosted scenarios...).

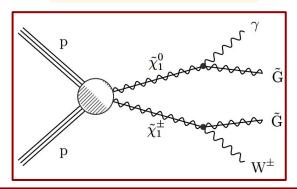
Thanks for your attention

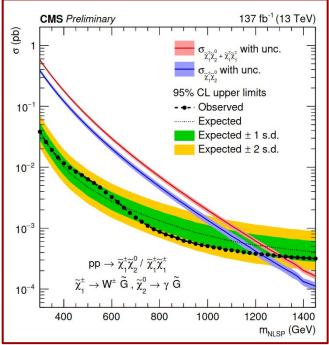
BACKUP

Search targeting final states with a photon, jets and large MET


Analysis exploring gauge-mediated SUSY breaking (GMSB)

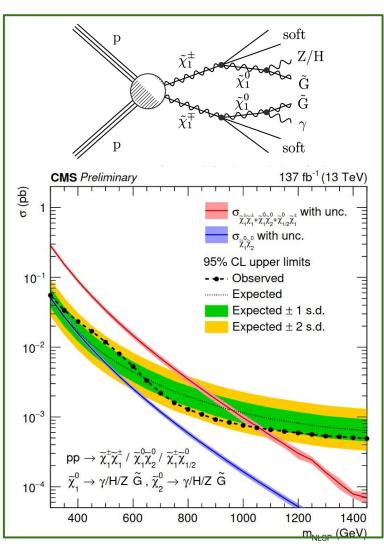
- Several EWK SUSY models considered, in final states with the gravitino as the LSP.
- Events selected with no leptons and at least 1 photon,

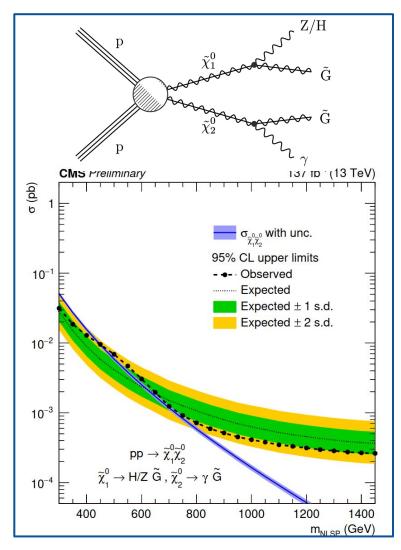

two jets, large $p_{\rm T}^{\rm miss}$ and large $S_{\rm T}$:


$$S_{\rm T} = \sum_{\rm jets} p_T + p_T^{\gamma}$$

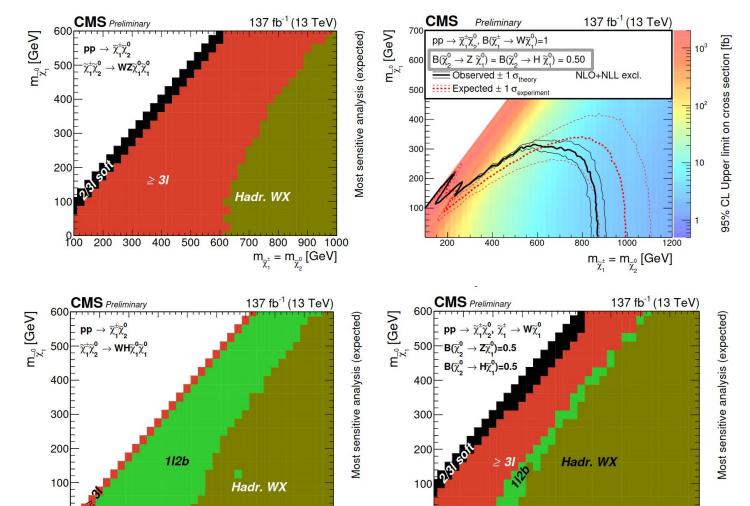
- Split in Signal Region (SRs) depending on the tagging of W/Z/H bosons, and further split in terms of p_T^{miss} and N_{iets}.
- Main backgrounds: Wy+jets, tty+jets
 - Estimated via data driven methods
- Chargino/neutralino masses excluded up to 1.3 TeV for the TChiWG model (more models in the <u>backup</u>)

CMS-PAS-SUS-21-009



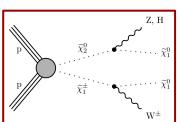

Search targeting final states with a photon, jets and large MET: Other models

TChiNG model



TChiNGnn model

Chargino/neutralino production in WZ/WH final states: Best exclusion limit per mass point + additional interpretations

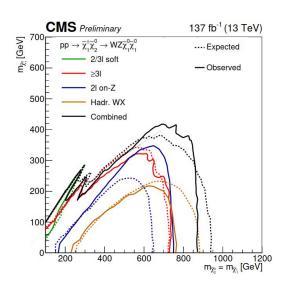

300

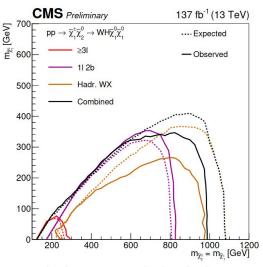
400 500 600 700 800 900 1000

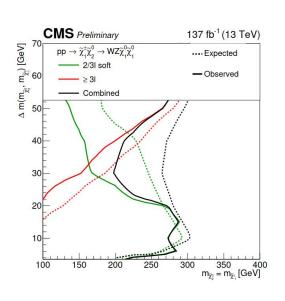
 $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0} \, [\text{GeV}]$

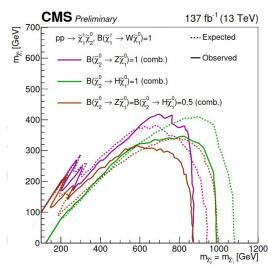
900 1000

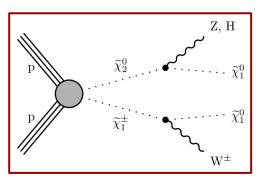
 $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0} \, [\text{GeV}]$


400


500 600


300


Chargino/neutralino production in WZ/WH final states: Exclusion contours



Search	Gaugino					
Search	WZ	WH				
$2/3\ell$ soft	1					
2ℓ on-Z	1					
2ℓ non-res.						
$\geq 3\ell$	1	1				
1ℓ2b		1				
4b						
Hadr. WX	1	1				

Event variables' definition

- \vdash H_T: scalar p_T sum of all jets.
- Transverse mass:

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}p_{\mathrm{T}}^{\mathrm{miss}}(1-\cos\Delta\phi)}$$

m_{τ2}: Stransverse mass

$$m_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\text{X}(1)} + \vec{p}_{\text{T}}^{\text{X}(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max \left(m_{\text{T}}^{(1)}, m_{\text{T}}^{(2)} \right) \right]$$

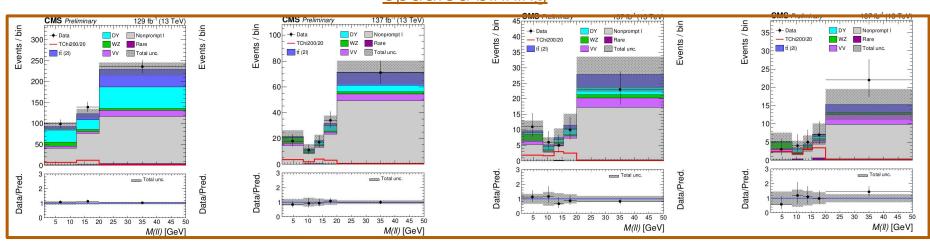
- m₁₂(II,x) (slepton production in 2/3) sott leptonj:
- d₀: the distance of $m_{T2}(\ell\ell,\chi) = \min_{\vec{p}_{T}^{miss}(1) + \vec{p}_{T}^{miss}(2) = \vec{p}_{T}^{miss}} \left[\max \left(M_{T}^{1}(m_{\chi}), M_{T}^{2}(m_{\chi}) \right) \right]$ transverse plane of the helical trajectory of the track with respect to the beam axis. +info here



EWK SUSY Combination Input analyses

2/3l soft search: Binning change in 2l soft SR

JHEP04(2022)091

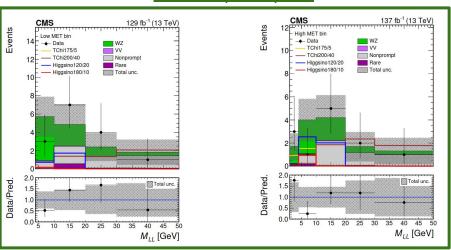

2l Low MET

21 med MET

2l high MET

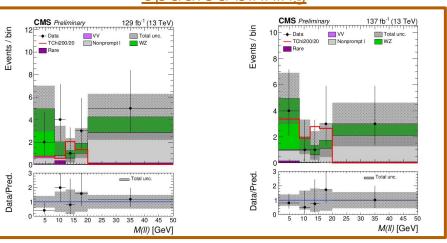
2l ultra MET

<u>Updated binning</u>

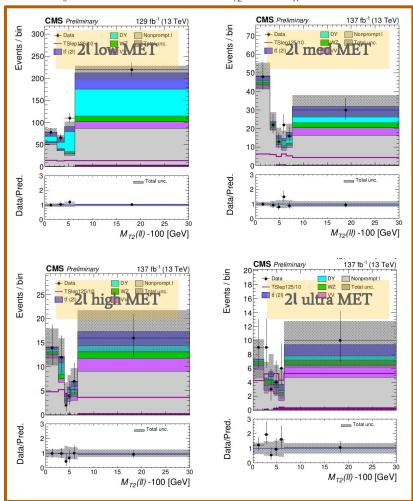


2/3l soft search:

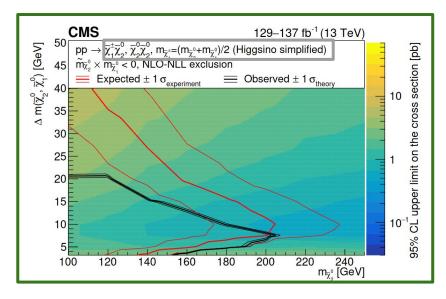
Binning change in 3I soft SR and binning for slepton production

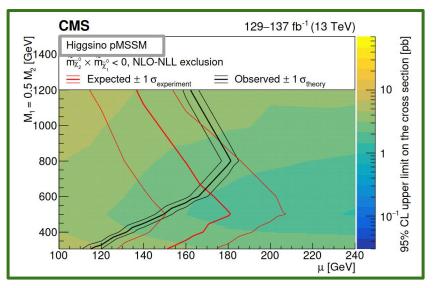

JHEP04(2022)091

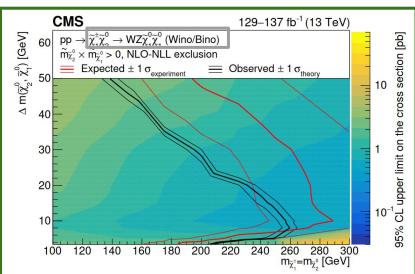
3l Low MET

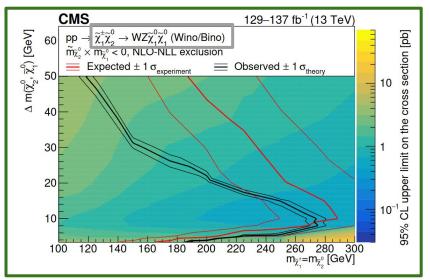

3l med MET

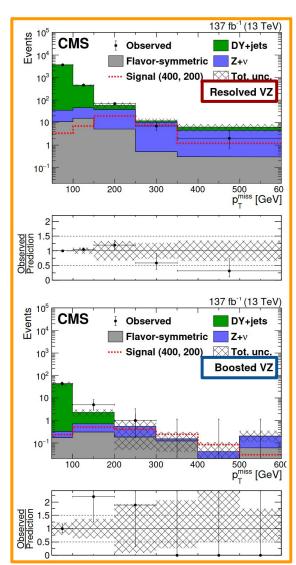
Updated binning

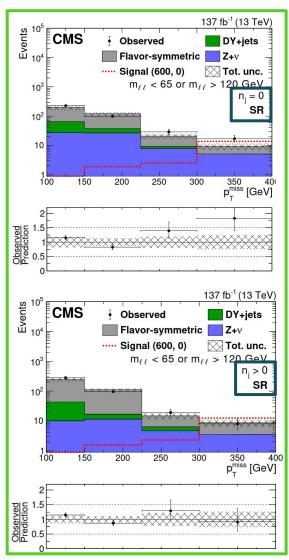

Binning for slepton production:


 M_{\parallel} not meaningful: use M_{T2} with M_{χ} =100 GeV



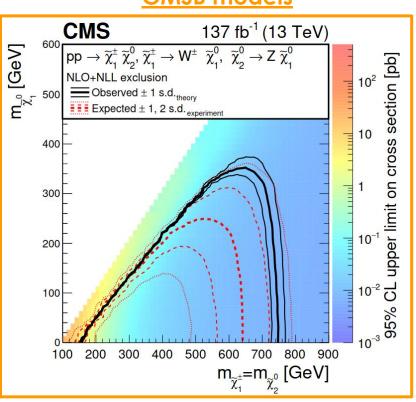

2/3l soft search: Expected & Observed limits (JHEP04(2022)091)

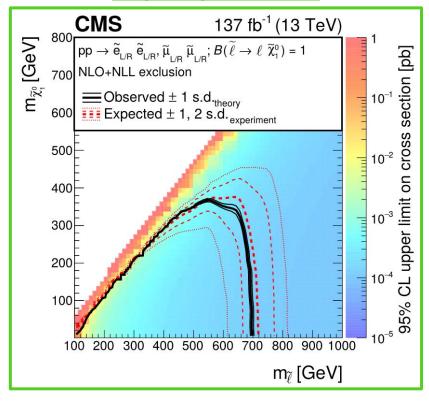



21 on Z/non resonant search: Signal region strategy (JHEP04(2021)123)

2l on-Z/non res: (Boosted)

- Two OS SF leptons (ee/μμ), with SR split in terms of p_T^{miss}.
- on Z analysis (slepton production): 86<m_{II}<96 GeV, standard (AK4) & wider (AK8) jet reconstructions, further splitting in terms of jet content.
- off Z analysis (GMSB models): 20<m_{II}<65
 GeV & m_{II}>120 GeV. SR split in resolved and boosted topologies




21 on Z/non resonant search: Expected & Observed limits (JHEP04(2021)123)

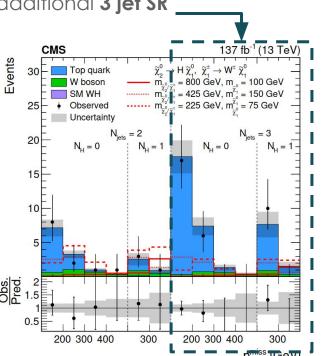
GMSB models

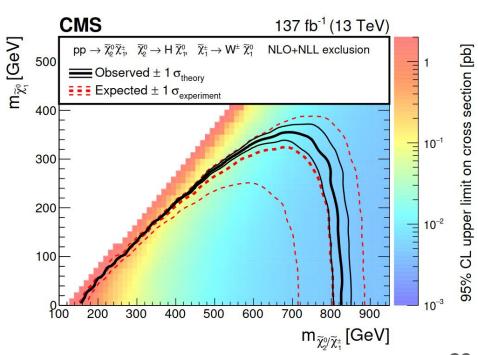
Slepton production

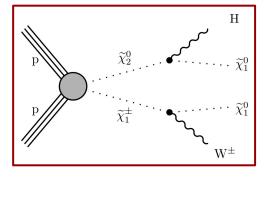
11 2b search:

Signal selection and observed/expected limits (JHEP10(2021)045)

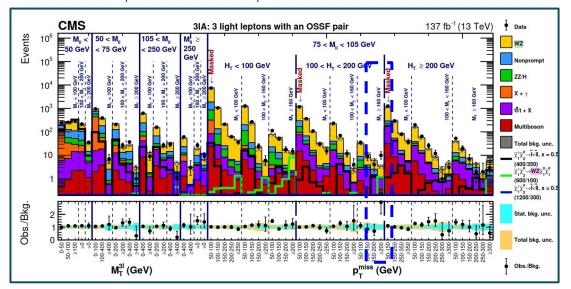
Targeting WH final states by selecting:

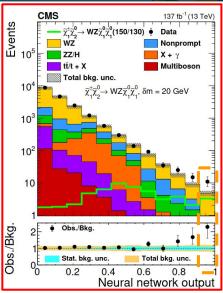

p_T¹¹>30 GeV, 2 b-tagged jets consistent with the Higgs boson mass, and large p_{τ}^{miss} .

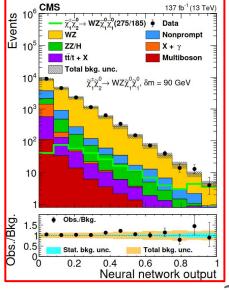

Improvements wrt analysis using 2016 data


JHEP11(2017)029):

- Use of a booster tagger
- Higher p_T miss binning

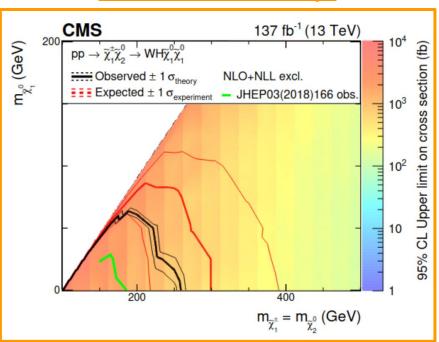



≥3l search: Signal selection (JHEP04(2022)147)

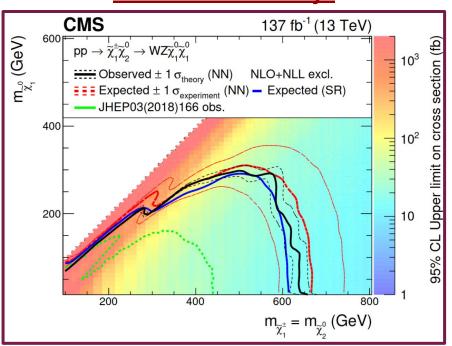


A search that targets neutralino production in diboson final states:

- 2l SS leptons (compressed region
- 3l and 4l: up to 2 hadronic taus τ_h.
 - o p_T¹>25 GeV, p_T¹²>20 GeV
- Uses parametric neural networks (NN) with the mass splitting (Δm=m_{NLSP}-m_{LSP}) as variable, trained per each signal hyptothesis.
 - o Gaining ~50 GeV wrt SR analysis
 - o Mild excesses found at low Δm in the NN case and in bins of high $p_{\scriptscriptstyle T}^{\rm miss}$ and 100<H $_{\scriptscriptstyle T}$ <200 GeV in the SR case



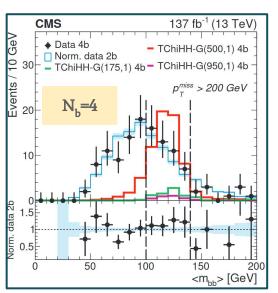
≥3l search: Observed/expected limits (JHEP04(2022)147)

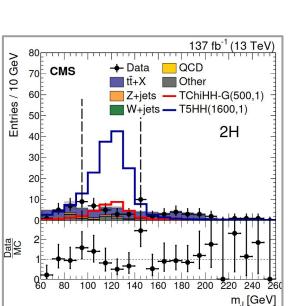


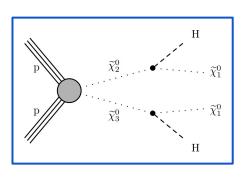
 $\chi_1^{\pm}\chi_2^{0}$ production in:

WH mediated decays

WZ mediated decays

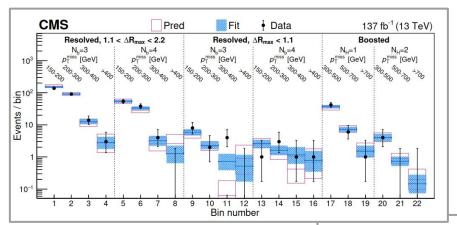


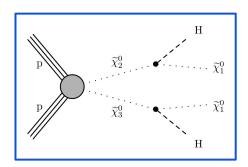

4b search: Signal selection (JHEP05(2022)014)



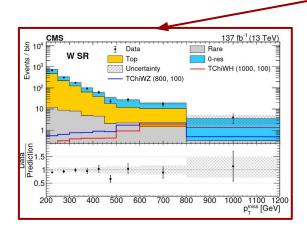
Targeting HH final states that considers both resolved and boosted scenarios, with no leptons

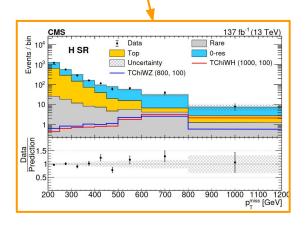
- Resolved scenario: 2 separate AK4 b-tagged jets.
 - o Signal extracted in terms of the $< m_{bb} > of$ the two b jets and N_{b-iets}
- Boosted scenario: 2b jets into an AK8 jet
 - Signal extracted in terms of the AK8 mass m_J and its n_H
- Main background, tt+X estimated with data driven ABCD method.

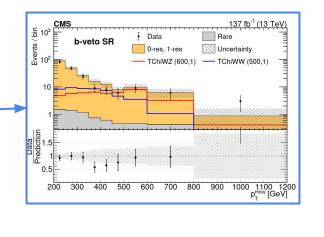


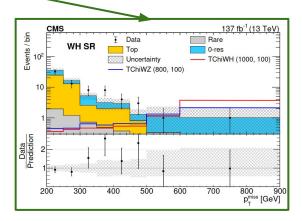


4b search: Observed/expected yields and limits (JHEP05(2022)014)

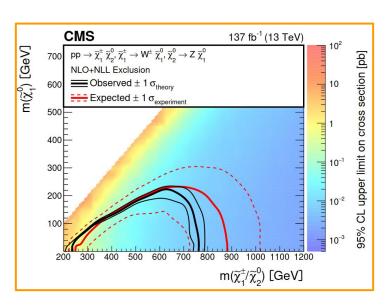

Hadr WX search:

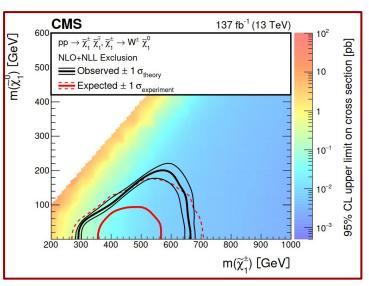

Signal strategy and observed/expected yields (Phys.Lett.B 842 (2023) 137460)

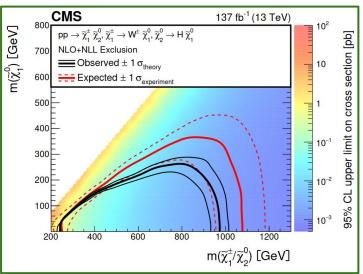



Hadr. WX: Fully hadronic final state

- At least 2 AK8 jets, compatible with W, Z and H bosons (Using machine learning algorithms).
- 2-6 AK4 jets
- Split in terms of b content:
 - o **B-Veto SR**: AK8 jets with 65<m₁<105 GeV
 - \rightarrow ≥1 compatible with W and ≥1 with W/Z.
 - o **B-Tag SR**: Subsplit in terms of the tagging
 - → AK8 jets compatible with W,H or WH, where H→bb.

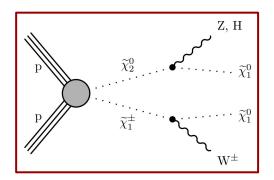


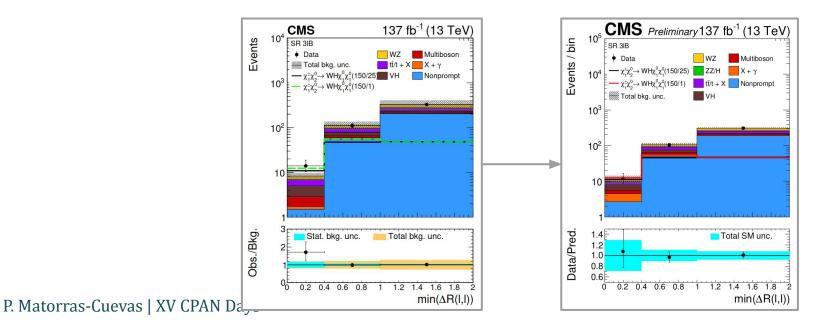

Hadr WX search: Observed/expected yields and limits (Phys.Lett.B 842 (2023) 137460)



Limits obtained for:

- \$\chi_1^{\pmu}\chi_2^0\$ decaying via \$\colon \text{W}\$ bosons
 \$\chi_1^{\pmu}\chi_2^0\$ decaying via \$\colon \text{W}\$ bosons
 \$\chi_1^{\pmu}\chi_2^0\$ decaying via \$\colon \text{W}\$ bosons


Electroweakino Combination: overlaps



CMS PAS SUS-21-008

Two big overlaps existing between 31 regions of 2/31 soft analysis, and those in the 31 categories in the ≥31 analysis:

- 31 WZ CR of 2/31 soft overlaps with the SR category of ≥3 I
 - → WZ CR removed from the fit, constrained through a nuisance parameter
- Sl soft SR (p_T^{l1} <30 GeV) with ≥3l analysis (p_T^{l1} >25 GeV)
 - → Updated the p_{T}^{ll} selection of ≥3l analysis,
 - → Only slight changes in the sensitivity (highest in the compressed WZ, ~1-10% in 20<Δm<70 GeV)</p>

Combination strategy

Leptonic analyses:

- 2/3l soft: <u>JHEP04(2022)091</u>
- 2l on-Z/non res:
 - JHEP04(2021)123
- ► 3l: <u>JHEP04(2022)147</u>

Hadronic/Semihardronic analyses:

- ► 1l 2b : <u>JHEP10(2021)045</u>
- ► 4b: <u>JHEP05(2022)014</u>
- Hadr. WX: <u>Phys.Lett.B 842 (2023)</u>
 137460

Search	Gaug	gino		GMSB		Н	iggsino-bin	O	Sleptons
Search	WZ	WH	ZZ	ZH	HH	WW	HH	WH	$\ell^+\ell^-$
$2/3\ell$ soft	all								2ℓ soft
2ℓ on-Z	EW		EW	EW					
2ℓ non-res.									Slepton
≥3ℓ	SS, A(NN)	SS, A–F	all	all	all	N.		SS, A–F	
<u> </u>	A(ININ)					:			
1ℓ2b		all						all	
4b					all		3-b, 4-b,		
70					all		2-bb		
Hadr. WX	all	b-tag				b-veto		b-tag	