Testing BSM Higgs couplings to Ws via VBF-HH at colliders

CPAN-IMFP Meeting 2-6 Oct 2023
Daniel Domenech Moya
(IFT - Universidad Autónoma de Madrid)
In collaboration with María José Herrero (IFT - UAM), Roberto Morales (IFLP, CONICET)

Summary

- The WW \rightarrow HH process and its relevance at colliders
1807.09736, Nucl.Phys.B 945 (2019) 114687, Arganda, García-García, Herrero
2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez
2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos
- The EFT approach to study BSM Higgs couplings: the HEFT
2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos 2307.15693, Arco, Domenech, Herrero, Morales. To appear in PRD 2023
- How to test Higgs couplings via Vector Boson Fusion at colliders:
- $e^{+} e^{-}$colliders
2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos + Work in progress, Dávila, Domenech, Herrero, Morales
- The LHC

Work in progress, Domenech, Herrero, Morales

The relevance of WW \rightarrow HH in the SM

Diagrams in unitary gauge

H
H Equivalence Theorem: OK at TeV

Clear LL dominance explaining the flat behavior with energy: $\mathrm{LL}>\mathrm{TT}>\mathrm{LT}+\mathrm{TL} \quad\left|\mathrm{T}\left(\mathrm{W}_{\mathrm{L}}^{+} \mathrm{W}_{\mathrm{L}}^{-} \rightarrow \mathrm{HH}\right)\right| \simeq\left|\mathrm{T}\left(\phi^{+} \phi^{-} \rightarrow \mathrm{HH}\right)\right|$ Access to $\lambda_{\mathrm{SM}}=\frac{m_{H}^{2}}{2 v^{2}}$

WW $\rightarrow \mathrm{HH}$ in BSM

Diagrams in unitary gauge:
like in most simulations with MG5

BSM parameterizations must preserve Gauge Invariance in the Lagrangian

Example: HEFT $\kappa_{V}=a ; \kappa_{2 V}=b$

WW \rightarrow HH at colliders (SM and BSM)

$\mathrm{WW} \rightarrow \mathrm{HH}$ takes place as a subprocess at both the LHC and $e^{+} e^{-}$colliders (ILC, CLIC)

[^0]- More difficult signals (separate WBF from ggF)
- Higher backgrounds
- Significant data (mainly HL-LHC)

Higgs Effective Field Theory (HEFT)

(Also called Electroweak Chiral Lagrangian)
$\mathscr{L}_{\mathrm{EChL}}^{\mathrm{LO}}=\frac{v^{2}}{4}\left[1+2 a\left(\frac{H}{v}\right)+\left(\frac{H}{v}\right)^{2}+\ldots\right] \operatorname{Tr}\left[\mathrm{D}_{\mu} \mathrm{U}^{\dagger} \mathrm{D}^{\mu} \mathrm{U}\right]-\kappa_{3} \lambda v \mathrm{H}^{3}-\frac{1}{4} \kappa_{4} \lambda \mathrm{H}^{4} \quad$ Ch. dim. 2
$a, b, \kappa_{3}, \kappa_{4}$: Couplings parameterising the BSM effects

$$
0.97<a_{[1]}^{\exp }<1.13 \quad-0.6<b_{[2]}^{\text {exp }}<2.8 \quad-0.4<\kappa_{3}^{\exp }<6.3
$$

- Operator ordering in terms of chiral dimension \rightarrow Powers of momentum in the operator
- GBs are in a non-linear representation $U=\exp \left(-i \phi^{i} \tau_{i} / v\right)$ $\cdot \mathrm{H}$ is a singlet \rightarrow Uncorrelated Higgs couplings

$$
a=b=\kappa_{3}=\kappa_{4}=1 \Rightarrow \text { SM case }
$$

In contrast to the doublet Φ used in the SM and SMEFT
$\mathscr{L}_{\mathrm{EChL}}^{\mathrm{NLO}}=\ldots+(\eta)\left(1 / v^{2}\right) \partial^{\mu} H \partial^{\nu} H \operatorname{Tr}\left[\left(D_{\mu} U^{+}\right)\left(D_{\nu} U\right)\right]+\delta\left(1 / v^{2}\right) \partial^{\mu} H \partial_{\mu} H \operatorname{Tr}\left[\left(D^{\nu} U^{+}\right)\left(D_{\nu} U\right)\right]+\ldots$

$$
\eta, \delta: \text { Relevant NLO couplings } \quad \eta=\delta=0 \Rightarrow \mathbf{S M} \text { case }
$$

Ch. dim. 4

Effective couplings of H with EW gauge bosons in HEFT

η and δ grow stronger with energy (chiral ordering), and affect the (dominant) LL modes
At high energies, η and δ dominate both a and b and other NLO coefficients

RESULTS

All the following predicted rates are generated with Madgraph 5 @NLO at LO Parton level simulations

2208.05452, Phys. Rev. D IO6 (2022) II5027, Domenech, Herrero, Morales, Ramos
2307.15693, Arco, Domenech, Herrero, Morales. To appear in Phys. Rev. D 2023

+ preliminar results from Dávila, Domenech, Herrero, Morales ($e^{+} e^{-}$)
+ preliminar results from Domenech, Herrero, Morales (LHC)

Results in $e^{+} e^{-}$colliders: a and b

Predicted signal cross section

(Similar results expected for $q \mathbf{q} \rightarrow \mathbf{H H q q}$)

Preliminar, Dávila, Domenech, Herrero, Morales

CLIC $3 \mathbf{T e V}$ Also studied ILC at 500 GeV and $1 \mathbf{T e V}$

Signal with greater statistics: $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{HH} \nu \bar{\nu} \rightarrow b \bar{b} b \bar{b} \nu \bar{\nu}$

$W_{L} W_{L}$	$\rightarrow H H$ for $\sqrt{s} \gg m_{W}, m_{H}$ has	
\mathcal{A}	$=\left(b-a^{2}\right) \frac{g^{2}}{4 m_{W}^{2}} s+\mathcal{O}\left(s^{0}\right)$	Close to the σ minimum
$\Delta b=2 \Delta a$		

Minimal detection cuts	
$p_{T}^{b}>20 \mathrm{GeV}$	$\left\|\eta^{b}\right\|<2$
$\Delta R_{b b}>0.4$	$E_{T}>20 \mathrm{GeV}$
b-tagging efficiency of 80%	

Sensitive to correlation hypothesis
$\left.\Delta b\right|_{2 H D M} \simeq-\left.2 \Delta a\right|_{2 H D M} c_{\beta-\alpha} \ll 1$

2307.15693, Arco, Domenech, Herrero, Morales. To appear in PRD 2023 2208.05452, Phys. Rev. D IO6 (2022) II5027, Domenech, Herrero, Morales, Ramos

In general going BSM with $\kappa_{2 V} \neq 1 ; \kappa_{V} \neq 1$ distorts the dist. in $M_{H H}$ producing bumps,

Example: $e^{+} e^{-} \rightarrow H H \nu \bar{\nu}$

Except close to $\kappa_{2 V}=\kappa_{V}^{2}$ \star

Close to $\kappa_{2 V}=\kappa_{V}^{2}$
$\Delta \kappa_{2 V}=2 \Delta \kappa_{V}$
$(\Delta b=2 \Delta a)$

Similar results expected for $q_{1} q_{2} \rightarrow H \mathrm{H}_{3} q_{4}$ (WBF at LHC) (Work in progress)

In general going BSM with $\kappa_{2 V} \neq 1 ; \kappa_{V} \neq 1$ distorts the dist. in η_{H} producing peaks at $\eta_{H}=0$
Example: $e^{+} e^{-} \rightarrow H H \nu \bar{\nu}$

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{HH} v \overline{\mathrm{v}}\right)$ at $\sqrt{\mathrm{s}}=3 \mathrm{TeV}$

Except close to $\kappa_{2 V}=\kappa_{V}^{2}$

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{HH} v \overline{\mathrm{v}}\right)$ at $\sqrt{\mathrm{s}}=3 \mathrm{TeV}$

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{HH} v \overline{\mathrm{v}}\right)$ at $\sqrt{\mathrm{s}}=3 \mathrm{TeV}$

Similar results expected for $q_{1} q_{2} \rightarrow H H q_{3} q_{4}$ (WBF at LHC)
(Work in progress)

In general going BSM with $\kappa_{2 V} \neq 1 ; \kappa_{V} \neq 1$ distorts the dist. in p_{T}^{H} elevating the tails at large p_{T}^{H} Except close to $\kappa_{2 V}=\kappa_{V}^{2} \quad \star$

Example: $e^{+} e^{-} \rightarrow H H \nu \bar{\nu}$

Similar results expected for $q_{1} q_{2} \rightarrow H q_{3} q_{4}$ (WBF at LHC)

Accessibility to LO-HEFT $(a, b)=\left(\kappa_{V}, \kappa_{2 V}\right)$ at $e^{+} e^{-}$

Accesible region

No realistic background considered

Accessibility parameter
$R=\frac{N_{B S M}-N_{S M}}{\sqrt{N_{S M}}}$

$$
\begin{gathered}
N_{B S M} \equiv \text { Events for } \mathbf{a}, \mathbf{b} \neq \mathbf{1} \\
N_{S M} \equiv \text { Events for } \mathbf{a}, \mathbf{b}=\mathbf{1}
\end{gathered}
$$

Purple region $(R>3) \equiv$ accesible region

Also considered $R>5$ and $R>10$

> CLIC is the best collider to access a and b and their correlations

Some correlations are less accesible, such as $\Delta b=2 \Delta a$, And others are more. e.g. in the UL quadrant, $\Delta b=-\frac{1}{2} \Delta a$ is the best $\}$

Testability of UV theories varies

Enhancement effects of NLO-HEFT (η, δ) at $e^{+} e^{-}$

Notice the fast growth with energy of NLO, $A \sim \mathcal{O}\left(s^{2}\right)$; to be compared with LO, $A \sim \mathcal{O}(s)$
Enhancement in $W W \rightarrow H H$ at large $\sqrt{s} \Rightarrow$ enhancement in $e^{+} e^{-} \rightarrow H H \bar{\nu}_{e} \nu_{e}$ at large invariant mass $M_{H H}$
The dashed lines correspond to the unitarity violation region

Accessibility to NLO-HEFT (η, δ) at $e^{+} e^{-}$

Minimal detection cuts	
$p_{T}^{b}>20 \mathrm{GeV}$	$\left\|\eta^{b}\right\|<2$
$\Delta R_{b b}>0.4$	$Z_{T}>20 \mathrm{GeV}$
b-tagging efficiency of 80%	

Signal with greater statistics: $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{HH} \nu \bar{\nu} \rightarrow b \bar{b} b \bar{b} \nu \bar{\nu}$
As expected, more accessibility in CLIC
(BSM cross section departs from the SM with energy)

Accessibility parameter

$$
R=\frac{N_{B S M}-N_{S M}}{\sqrt{N_{S M}}}
$$

Accesible region: $\mathrm{R}>3$

2208.05452, Phys. Rev. D IO6 (2022) II5027, Domenech, Herrero, Morales, Ramos

CLIC

Accessibility to NLO-HEFT (η, δ) at LHC

All events generated with MadGraph 5: signal and background (Pdf set NN23LO1)

At the LHC, the background acquires a strong relevance
Two relevant backgrounds

Several cuts to discriminate the signal:
$\left.\begin{array}{r}\text { VBF cuts } \\ 2<\left|\eta_{j}\right|<5 \\ \eta_{j_{1}} \cdot \eta_{j_{2}}<0 \\ M_{i j}>500 \mathrm{GeV}\end{array}\right\} \quad \Delta \eta_{j j}>4$

$\eta_{b}<2.5$	Basic detection cuts	
	$\Delta R_{j j}>0.4$	$\Delta R_{r j}>0.4$
	$\Delta R_{\gamma \gamma}>0.4$	$\Delta R_{\gamma b}>0.4$
	$\Delta R_{b j}>0.4$	$\Delta R_{b b}>0.2$
$p_{T}^{j}>20 \mathrm{GeV}$	$p_{T}^{b}>25 \mathrm{GeV}$	$p_{T}^{\gamma}>30 \mathrm{GeV}$

VBF jets topology at LHC: BSM with NLO-HEFT (η, δ) versus SM

We consider conservative values in $[-0.01,0.01]$ for both η and δ

(Work in progress, Domenech, Herrero, Morales)

The $M_{i j}$ cut removes the stronger region

$\sigma(\mathrm{pp} \rightarrow \mathrm{hhjj} \rightarrow \mathrm{b} \overline{\mathrm{b}} \gamma \mathrm{jj})$ for different η and $\delta, \sqrt{\mathrm{s}}=14000 \mathrm{GeV}$

$\gamma \gamma b \bar{b}$ topology from HH decays at LHC: BSM with NLO-HEFT (η, δ) versus SM

Optimising detection cuts to access (η, δ) at HL-LHC

Example of refining cuts \longrightarrow Provide good accessibility to most of the considered signals

$$
\begin{gathered}
p_{T_{r_{1}}}>60 \mathrm{GeV} \quad p_{T_{b_{1}}}>60 \mathrm{GeV} \\
M_{b b r \gamma}>400 \mathrm{GeV} \\
M_{j j}>700 \mathrm{GeV}
\end{gathered}
$$

We assume 14 TeV and $L=3 a^{-1}$

Number of detected $\mathbf{q q} \rightarrow \mathbf{H H} \mathbf{j j} \rightarrow \gamma \gamma \mathbf{b b} \mathbf{j j}$ events			
$\eta \boldsymbol{\delta}$	-0.01	$\mathbf{0}$	$\mathbf{0 . 0 1}$
-0.01	50.8	6.2	17.8
$\mathbf{0}$	27.7	$4.0(\mathrm{SM})$	36.2
$\mathbf{0 . 0 1}$	12.7	9.6	62.6

Events for backgrounds

$\mathbf{Z H}$	4.9
QCD-EW	1.6

Most BSM signals have an expected number of events much greater than the backgrounds, being potentially accesible

Conclusions

- Studying the WBF process provides access to BSM Higgs couplings
- Possible correlations among effective couplings give information about UV theories in addition to the couplings themselves
- There is good accessibility to BSM Higgs couplings to W bosons in both future $e^{+} e^{-}$colliders and the HL-LHC

Thanks for your attention

Relevance of testing correlations among effective couplings

- Each UV theory predicts the values of the effective couplings:
- In HEFT, this means predicting values for $a, b, \kappa_{3}, \kappa_{4}, \eta, \delta, \ldots$
- UV theories also predict possible correlations among the eff. couplings
- Specific observables (such as WBF) are sensitive to certain correlations e.g. $\mathrm{WW} \rightarrow \mathrm{HH}$ is sensitive to $\kappa_{V}^{2}-\kappa_{2 V}$
- Therefore, testing sensitivity to this correlation is also testing the UV theory

Predictions of the HEFT coefficients from particular settings

Amplitude matching: identify mathematical structures within the scattering amplitudes at low energies, up to a certain order in $\Lambda_{U V}$.
Amplitudes are directly related to observables. $\quad T(W W \rightarrow H H)_{H E F T}=T(W W \rightarrow H H)_{U V}$ at $\sqrt{s} \ll \Lambda_{U V}$

Example: 2HDM

$$
\Delta a \equiv 1-a \quad \Delta b \equiv 1-b
$$

$$
\text { Input parameters: } v, m_{H}, m_{H_{\text {heavy }}}, m_{H^{ \pm}}, m_{A}, c_{\beta-\alpha}, t_{\beta}, m_{12}
$$

SMEFT matching
Results in the heavy masses expansion $m_{\text {heavy }} \gg m_{H}, m_{W}, m_{Z}, v, \ldots$
$\left.a\right|_{2 H D M}=\left.s_{\beta-\alpha} \quad b\right|_{2 H D M}=1+c_{\beta-\alpha}^{2}\left[1-2 c_{\beta-\alpha}^{2}+2 c_{\beta-\alpha} s_{\beta-\alpha} \cot (2 \beta)\right]$
$\left.\Delta a\right|_{S M E F T}=-\left.\frac{1}{4} \frac{v^{2}}{\Lambda^{2}} \delta_{\phi D} \quad \Delta b\right|_{S M E F T}=-\frac{v^{2}}{\Lambda^{2}} \delta_{\phi D}$

$$
\text { Also correlated! }\left.\Delta b\right|_{\text {SMEFT }}=\left.4 \Delta a\right|_{\text {SMEFT }}
$$

Notice the non-decoupling effects

$\left.\Delta b\right\|_{2 H D M} \simeq-\left.2 \Delta a\right\|_{2 H D M}$	$\begin{array}{c}\text { Correlations among coefficients give } \\ \text { information about possible UV theories! for }\end{array}$
	$\eta=\frac{v^{4}}{4 \Lambda^{4}}\left[a_{\phi^{4}}^{(1)}+a_{\phi^{4}}^{(2)}\right] \quad \delta=\frac{v^{4}}{4 \Lambda^{4}} a_{\phi^{4}}^{(3)}$

2307.15693, Arco, Domenech, Herrero, Morales. To appear in Phys. Rev. D 2023 2208.05452, Phys. Rev. D IO6 (2022) II5027, Domenech, Herrero, Morales, Ramos

[^0]: - Cleaner
 - Lower backgrounds
 - No data yet (still a project)

