Search for exotic Higgs decays $H \rightarrow aa$ and $H \rightarrow a_1a_2$ in the 4b and 6b final states using the ATLAS Detector

Paula Martínez Suárez on behalf of the ATLAS Collaboration Institut de Física d'Altes Energíes (IFAE-BIST)

02/10/2023

and XV CPAN Davs

L International Meetings on Fundamental Physics

Outline

- Introduction
- Event selection
- Background modelling
- Analysis strategy
- Results
- Summary

Introduction

[arXiv:2207.00092]

- The SM **Higgs boson** (H) is one of the main interests of the LHC Physics Program.
- Until now, its properties are **consistent** with the SM predictions.
- However, available measurements only constrain **non-SM decays to be** \leq **12%**. •

- Non-SM decays of the Higgs boson are not discarded \Rightarrow • lots of possibilities for new Physics!
- Example: a new light spin-0 particle (a) with Yukawa-like couplings to SM fermions. .
 - Could be a DM mediator.
 - It could make the EW Phase Transition first order \rightarrow EW baryogenesis. ⊳
 - It could solve the naturalness problem.

Introduction

• In this analysis, two options are considered:

1) One spin-0 particle *a* with $2m_a < m_H \Rightarrow | H \rightarrow aa \rightarrow 4b |$

2) Two spin-0 particles a_1, a_2 with $m_{a_1} + m_{a_2} < m_H \Rightarrow | H \rightarrow a_1 a_2 \rightarrow 4b/6b$

- The *bb* decay channel is chosen to maximise the BR.
- The Higgs boson is produced in association with a Z boson that decays leptonically ⇒ less QCD background.

Introduction

- All the mentioned processes have one thing in common: multi-b final state.
- These b behave differently depending on whether the a boson is lighter (boosted regime) or heavier (resolved regime).
- Three types of *b*-object are defined: *B*-jets, *b*-jets and soft secondary vertices (SVs).

Event selection

Input events

- ▶ Full Run 2 dataset (2015-2018).
- ▶ 140 fb⁻¹ of *pp* collisions at \sqrt{s} = 13 TeV recorded using the ATLAS Detector.
- ▶ Trigger requirements: at least one lepton (*e* or μ).

Event selection

- ▶ Exactly two leptons (*ee* or $\mu\mu$) with $|m_{\ell\ell} m_Z| \le 20$ GeV.
- ▶ Leading $\ell p_T > 27$ GeV, sub-leading $\ell p_T > 10$ GeV.
- ▹ At least 3 *b*-objects:

 $(2 \times N_{B-jets} + N_{b-jets} + N_{SVs}) \ge 3$

Background modelling

Data vs. MC discrepancies in $tt+\geq 1b$ from the ttH(bb) analysis [arXiv:2111.06712]

• The two main backgrounds are *tt*+jets (left) and *Z*+jets (right) with additional *b* radiation.

- These backgrounds are mismodelled in the MC predictions, with large differences between different generators.
- They are corrected by comparing to data in signal-depleted regions.
- Common variables used are the event rate, the number of jets and the hard momentum.

m_k [GeV]

Analysis strategy

 $- \xrightarrow{2}_{H} \xrightarrow{a}_{a} \xrightarrow{b}_{b} \xrightarrow{2}_{H} \xrightarrow{a}_{a} \xrightarrow{a}_{b}$

$H \rightarrow aa \rightarrow 4b$ and $H \rightarrow a_1a_2 \rightarrow 4b$ (direct decay)

- ▶ Large fraction of the events can be fully reconstructed.
- ▶ Mass-parametrised NN to identify the best $a \rightarrow bb$ pairing hypothesis and define the signal regions.
- ▶ A BDT is trained in each signal region for the final signal vs. background discrimination.

SR	<i>B</i> -jets	<i>b</i> -jets	SVs	NN score	BDT score
2B	2	0	0	> 0.5	any
1B2b	1	2	0	> 0.05	any
1B1b1v	1	1	1	> 0.05	any
4b	0	4	0	> 0.05	any
3b1v	0	3	1	> 0.05	any

Control regions are defined either with NN score $\leq 0.05~(0.5~\text{in 2B})$ or $\ell\ell=e\mu$

Analysis strategy

$H \rightarrow a_1 a_2 \rightarrow 6b$ (cascade decay)

- ▶ Very difficult to reconstruct the full event.
- ▶ No NN reconstruction is applied. Signal regions are defined by counting *b*-objects.
- ▶ A BDT is trained in each signal region for the final signal vs. background discrimination.

SR	<i>B</i> -jets	<i>b</i> -jets	SVs	BDT score
2B	≥2	=0	any	Medium, Tight
2B1b	≥2	≥1	any	Medium, Tight
1B2b	=1	≥2	any	Medium, Tight
4b	=0	≥4	=0	Medium, Tight
4b1v	=0	≥ 4	≥1	Medium, Tight
3b1v	=0	≥3	≥1	Medium, Tight

Control regions are defined either with BDT score = Loose or $\ell \ell = e \mu$

Analysis strategy

Asimov fit

- ▶ A binned likelihood fit is used to compute the expected limit with a 95% CL.
- This calculation depends on the signal strength and a set of nuisance parameters (background normalisation, systematic uncertainties...), as well as the analysis framework.
- ▶ The distribution of choice for this calculation is the **BDT score in each signal region**.
- ▶ At the same time, **control regions** are used to check background modelling.

Systematic uncertainties

▶ There are many sources of uncertainty to consider when performing an ATLAS analysis. Here are some of them:

Detector	Leptons	Jets	<i>b</i> -objects	Modelling	
Luminosity	Trigger	JVT	b-tagging	MC generator	
Pileup	Isolation	JER/JES	B-tagging	MC parton shower	
	ID	Composition	SV-tagging	PDF	
		Calibration		Background modelling	

Results

 $H \rightarrow aa \rightarrow 4b$

▶ There are two previous ATLAS studies at 36 fb⁻¹ for this decay channel:

- m_a ∈ [15, 30] GeV [arXiv:2005.12236]
- *m_a* ∈ [20, 60] GeV [arXiv:1806.07355]
- ▶ This analysis covers the mass range $m_a \in [12, 60]$ GeV at 140 fb⁻¹.
- ▶ Improved sensitivity due to higher luminosity and improved *b* identification techniques.

The 2B region allows to explore m_2 down to 12 GeV

1B2b and 1B1b1v regions improve sensitivity in the mixed regime (~20 GeV)

Results

 $H \rightarrow a_1 a_2 \rightarrow 4b/6b$

- ▶ There are no previous studies on this decay channel.
- ▷ Direct decays: $(m_{a_1}, m_{a_2}) = (20,30), (40,60), (50,70)$ GeV.
- ▷ Cascade decays: $(m_{a_1}, m_{a_2}) = (15,50), (15,90), (20,70), (30,80)$ GeV.

Summary

- Two searches for exotic Higgs decays are presented, using the full Run 2 dataset of 140 fb⁻¹ at \sqrt{s} = 13 TeV.
 - ▶ Improved results on $BR(H \rightarrow aa \rightarrow 4b)$.
 - ▶ First ever study of $H \rightarrow a_1 a_2 \rightarrow 4b/6b$ processes.
- New b-tagging tools developed for this analysis play a very important role ⇒ low-p_T b-tagging, B-jets, SVs.
 - ▷ They will be used in other ongoing searches, such as $H \rightarrow aa \rightarrow 4b \ 0\ell$, $H \rightarrow aa \rightarrow bb\tau\tau\tau$ and tta, $a \rightarrow bb$.
- The search for light spin-0 particles in ATLAS is not limited to the $a \rightarrow bb$ decay channel, with other existing studies including $a \rightarrow \tau \tau$, $\mu \mu$, $\gamma \gamma$, gg and qq.

The ATLAS Detector

[ATLAS-PHOTO-2022-055]

DeXTer tagger for *B*-jets

- Low- $p_T X \rightarrow bb$ tagger (20-200 GeV). Reference: ATL-PHYS-PUB-2022-042.
- Jets with R = 0.8 instead of the standard 0.4, which may not be sufficient to contain the full $X \rightarrow bb$ decay.

TC-LVT tagger for soft secondary vertices

- Soft *b*-hadron tagger (<15 GeV). Reference: ATLAS-CONF-2019-027.
- Used when the p_{T} is too low to produce a calorimeter jet.

Summary plot from similar ATLAS analyses (Run 1 and 2)

Public results from similar ATLAS analyses at 140 fb⁻¹

$H \rightarrow aa \rightarrow 4\gamma$ [ATLAS-CONF-2023-040]

